10.3 平行线的性质 课件(共23张PPT)

资源下载
  1. 二一教育资源

10.3 平行线的性质 课件(共23张PPT)

资源简介

(共23张PPT)
10.3 平行线的性质
第10章 相交线、平行线与平移
沪科版七年级数学下册
两直线平行
1.同位角相等
2.内错角相等
3.同旁内角互补
问题 平行线的判定方法是什么?
思考 反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢
回顾与思考
画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:
角 ∠1 ∠2 ∠3 ∠4
度数
角 ∠5 ∠6 ∠7 ∠8
度数
平行线的性质

一、平行线的基本性质1
b
1
2
a
c
5
6
7
8
3
4
观察:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想:
猜想 两条平行线被第三条直线所截,
同位角 .
相等
b
1
2
a
c
5
6
7
8
3
4
再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
b
1
2
a
c
5
6
7
8
3
4
d
如果两直线不平行,上述结论还成立吗?
一般地,平行线具有如下性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
总结归纳
b
1
2
a
c
一般地,平行线具有如下性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
∴∠1=∠2
(两直线平行,同位角相等)
∵a∥b(已知)
应用格式:
总结归纳
b
1
2
a
c
思考:在上一节中,我们利用“同位角相等,两直线平行线”推出了“内错角相等,两直线平行线”,类似的,已知两直线平行,同位角相等, 那么能否得到内错角之间的数量关系?
二、平行线的基本性质2
如图,已知a//b,那么∠2与∠3相等吗?为什么
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
又∵ ∠1=∠3(对顶角相等),
∴ ∠2=∠3(等量代换).
b
1
2
a
c
3
4
如图,已知a//b,那么∠2与∠3相等吗?为什么
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
又∵ ∠1=∠3(对顶角相等),
∴ ∠2=∠3(等量代换).
性质2:两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
∴∠2=∠3
(两直线平行,内错角相等)
b
1
2
a
c
3
4
如图,已知a//b,那∠2与∠4有什么关系呢?为什么
解: ∵a//b (已知),
∴ 1= 2(两直线平行,同位角相等).
∵ 1+ 4=180°(邻补角定义),
∴ 2+ 4=180°(等量代换).
b
1
2
a
c
3
4
性质3:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
如图,已知a//b,那∠2与∠4有什么关系呢?为什么
解: ∵a//b (已知),
∴ 1= 2(两直线平行,同位角相等).
∵ 1+ 4=180°(邻补角定义),
∴ 2+ 4=180°(等量代换).
b
1
2
a
c
3
4
性质3:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
(两直线平行,同旁内角互补)
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补.
所以梯形的另外两个角分别是80° 、 65°.
于是∠D=180 °-∠A=180°-100°=80°
∠C= 180 °-∠B=180°-115°=65°
典例精析
例1.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?
A
B
C
D
如图,一条公路两次拐弯前后两条路互相平行.第一次拐的∠B是142o,第二次拐的∠C是多少度?为什么?
解:∠C=142o ∵两直线平行,内错角相等.
B
C
例2.
如图,一条公路两次拐弯前后两条路互相平行.第一次拐的∠B是142o,第二次拐的∠C是多少度?为什么?
解:∠C=142o ∵两直线平行,内错角相等.
B
C
例2.
如果有两条直线被第三条直线所截,那么必定有( )
A.内错角相等 B.同位角相等
C.同旁内角互补 D.以上都不对
D
解: ∠A =∠D.理由:
∵ AB∥DE(  )
∴∠A=_______ ( )
∵AC∥DF( )
∴∠D=______ ( )
∴∠A=∠D ( )
如图1,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数量关系,并说明理由.
P
F
C
E
B
A
D
图1
已知
∠CPE
两直线平行,同位角相等
已知
∠CPE
两直线平行,同位角相等
等量代换
解: ∠A+∠D=180o. 理由:
∵ AB∥DE(  )
∴∠A= ______ ( )
∵AC∥DF( )
∴∠D+ _______=180o ( )
∴∠A+∠D=180o( )
如图2,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数量关系,并说明理由.
图2
F
C
E
B
A
D
P
已知
∠CPD
两直线平行,同位角相等
已知
∠CPD
两直线平行,同旁内角互补
等量代换
如图,如果AB∥DF,DE∥BC,且∠1=65°,那么你能说出∠2,∠3,∠4的度数吗?为什么?
解:∵DE∥BC(已知),
∴∠4=∠1=65°(两直线平行,内错角相等),
∠2+∠1=180°(两直线平行,同旁内角互补).
∴∠2=180°-∠1=180°-65°=115°.
又∵DF∥AB(已知),
∴∠3=∠2(两直线平行,同位角相等).
∴∠3=115°(等量代换).
两直线平行
同位角相等
内错角相等
同旁内角互补
平行线的判定
平行线的性质
线的关系
角的关系
性质
角的关系
线的关系
判定
讨论:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?(分组讨论)
小结:平行线的判定与性质
下 课
Thanks!
https://www.21cnjy.com/recruitment/home/fine

展开更多......

收起↑

资源预览