2.3 圆柱的体积(课件)(共18张PPT)青岛版(六三制)数学六年级下册

资源下载
  1. 二一教育资源

2.3 圆柱的体积(课件)(共18张PPT)青岛版(六三制)数学六年级下册

资源简介

(共18张PPT)
第 3 节
圆柱的体积
学 习 目 标
01
掌握圆柱体积的计算方法,并能正确计算,能运用圆柱的体积计算方法解决简单的实际问题。(重点)
02
通过观察具体情境、拼图等活动,理解圆柱体积公式的推导过程。(难点)
03
经历探索圆柱体积计算方法的过程,体会类比的数学思想方法。
复 习 导 入
你还记得上节课我们学习的知识吗?
S侧=Ch
S表=S侧+2S底
圆柱的表面积=圆柱的侧面积+底面积×2
圆柱的侧面积=底面周长×高
情 境 导 入
你能提出什么问题?
圆柱形包装盒的体积是多少立方厘米?
观察左图,你能得
到什么信息?
新 课 探 究
圆柱形包装盒的体积是多少立方厘米?
一个圆柱所占空间的大小,叫做这个圆柱的体积。
怎样求圆柱的体积呢?
我知道圆的面积公式是把圆转化成近似的长方形推导出来的。
S = πr2

我猜想圆柱的体积公式可能是把圆柱转化成长方体来推导的。
怎样把圆柱转化成长方体呢?
等分的份数越多,拼成的立体图形就越接近长方体。
等分16份
等分32份
……
拼成后的长方体与原来的圆柱有怎样的关系?
①体积相等。②底面积相等。③高相等。
表面积比圆柱的表面积多了左、右两侧的两个长方形的面积。
侧面的长方形面积=圆的半径×高
拼成后的长方体的体积等于原来圆柱的体积。
底面积

圆柱的体积

×
长方体的体积=底面积×高
圆柱底面周长的一半
圆柱的高
底面
半径
圆柱的体积公式
圆柱的体积=底面积×高
V=Sh
底面积:3.14×(12÷2)2
=3.14×36
=113.04(cm2)
体积:
113.04×20
=2260.8(cm3)
答:圆柱形包装盒的体积是2260.8cm3。
圆柱形包装盒的体积是多少立方厘米?
小 结
知识点
1、意义:圆柱所占空间的大小叫作圆柱的体积。
2、圆柱的体积=底面积×高
用字母表示为V=Sh=πr2h
1、哪一根木料的体积大
第一根:3.14×(0.4÷2)2×10=
第二根:3.14×(0.6÷2)2×8=
1.256<2.2608
答:第二根木料的体积大。
V=Sh
1.256(m3)
2.2608(m3)
2、
就是必须倒满才算1杯,桶里剩下的纯净水只要不满1杯,就要舍去。
根据圆柱的体积公式计算出杯子的容积。
求出桶的容量是杯子容量的多少倍。
答:一桶纯净水大约可以倒满 37 杯。
19 升=19000 毫升
3.14×(8÷2)2×10=
19000÷502.4
=19000 立方厘米
502.4(立方厘米)
≈37.8(杯)
饮料瓶设计成圆柱形,从安全角度考虑,圆柱体没有凸起部分,会
使整体比较圆滑,不容易划伤人;从容量方面考虑,单位面积的材料制作成圆柱形瓶子得到的容积大于各种棱柱形瓶子。有一个饮料瓶,它的瓶身呈圆柱形(不包括瓶颈),它的容积为 101毫升。当瓶子正放时,瓶内的饮料的液面高为8厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内有多少毫升饮料?
2厘米
8厘米
饮料的体积是不变的,瓶内空余部分的体积也是不变的。
V=Sh
左瓶的空余部分体积=右瓶的空余部分体积
101-8×底面积=2×底面积
解:设饮料瓶的底面积是x平方厘米。
101-8x=2x
10x=101
x=10.1
10.1×8=80.8(毫升)
答:瓶内有80.8毫升饮料。
饮料瓶设计成圆柱形,从安全角度考虑,圆柱体没有凸起部分,会
使整体比较圆滑,不容易划伤人;从容量方面考虑,单位面积的材料制作成圆柱形瓶子得到的容积大于各种棱柱形瓶子。有一个饮料瓶,它的瓶身呈圆柱形(不包括瓶颈),它的容积为 101毫升。当瓶子正放时,瓶内的饮料的液面高为8厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内有多少毫升饮料?
2厘米
8厘米
饮料的体积是不变的,瓶内空余部分的体积也是不变的。
饮料的体积是空余部分体积的8÷2=4倍
答:瓶内有80.8毫升饮料。
饮料的体积是饮料瓶容积的倍
101×
80.8(毫升)

展开更多......

收起↑

资源预览