北师大版高中数学必修第一册第七章4事件的独立性课件+学案

资源下载
  1. 二一教育资源

北师大版高中数学必修第一册第七章4事件的独立性课件+学案

资源简介

§4 事件的独立性
学习任务 核心素养
1.结合有限样本空间,了解两个随机事件独立性的含义.(难点、易混点) 2.结合古典概型,利用独立性计算概率.(重点) 1.通过对事件独立性概念的学习,培养数学抽象素养. 2.通过计算相互独立事件的概率,培养数学运算素养.
1.当事件A,B满足什么条件时,事件A与B相互独立?
2.相互独立事件有哪些性质?
3.如何求相互独立事件同时发生的概率?
4.相互独立事件与互斥事件的区别是什么?
相互独立事件的概念和性质
定义 事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫作相互独立事件
计算 公式 两个相互独立事件同时发生的概率,等于这两个事件发生的概率的积,即P(AB)=P(A)P(B)
性质 如果两个事件相互独立,那么把其中一个换成它的对立事件,这样的两个事件仍然相互独立.即当事件A,B相互独立时,则事件A与事件相互独立,事件与事件B相互独立,事件与事件相互独立
(1)事件A与B相互独立可以推广到n个事件的一般情形吗?
(2)公式P(AB)=P(A)P(B)可以推广到一般情形吗?
[提示] (1)对于n个事件A1,A2,…,An,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称事件A1,A2,…,An相互独立.
(2)公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).
1.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C的关系是(  )
A.A与B,A与C均相互独立
B.A 与B相互独立,A与C互斥
C.A与B,A与C均互斥
D.A与B互斥,A与C相互独立
A [由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.]
2.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是(  )
A.0.56   B.0.92   C.0.94   D.0.96
C [∵两人都没有击中的概率为0.2×0.3=0.06,∴目标被击中的概率为1-0.06=0.94.]
类型1 相互独立事件的判断
【例1】 判断下列各对事件哪些是互斥事件,哪些是相互独立事件.
(1)掷一枚骰子一次,事件M:“出现的点数为奇数”;事件N:“出现的点数为偶数”;
(2)掷一枚骰子一次,事件A:“出现偶数点”;事件B:“出现3点或6点”.
[解] (1)∵二者不可能同时发生,∴M与N是互斥事件.
(2)样本空间Ω={1,2,3,4,5,6},事件A={2,4,6},事件B={3,6},事件AB={6},
∴P(A)==,P(B)==,
P(AB)==,
即P(AB)=P(A)P(B).
故事件A与B相互独立.当“出现6点”时,事件A,B可以同时发生,因此A,B不是互斥事件.
 判断事件是否相互独立的方法
(1)定义法:事件A,B相互独立 P(AB)=P(A)·P(B).
(2)利用性质:A与B相互独立,则A与与B,与也都相互独立.
[跟进训练]
1.甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B(  )
A.相互独立但不互斥
B.互斥但不相互独立
C.相互独立且互斥
D.既不相互独立也不互斥
A [对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.]
类型2 相互独立事件概率的计算
【例2】 甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为,且各自能否被选中互不影响.
(1)求3人同时被选中的概率;
(2)求3人中至少有1人被选中的概率.
[解] 设甲、乙、丙能被选中的事件分别为A,B,C,则P(A)=,P(B)=,P(C)=.
(1)3人同时被选中的概率
P1=P(ABC)=P(A)P(B)P(C)==.
(2)3人中有2人被选中的概率
P2=P(AB∪A CBC)
==.
3人中只有1人被选中的概率
P3=P(A B C)==.
故3人中至少有1人被选中的概率为P1+P2+P3==.
[母题探究]
1.(变设问)保持条件不变,求三人均未被选中的概率.
[解] 法一:三人均未被选中的概率
P=P()=(1-=.
法二:由例2(2)知,三人至少有1人被选中的概率为,
∴三人均未被选中的概率P=1-=.
2.(变条件,变设问)若条件“3人能被选中的概率分别为”变为“甲、乙两人只有一人被选中的概率为,两人都被选中的概率为,丙被选中的概率为”,求恰好有2人被选中的概率.
[解] 设甲被选中的概率为P(A),乙被选中的概率为P(B),
则P(A)[1-P(B)]+P(B)[1-P(A)]=,①
P(A)P(B)=,②
由①②知P(A)=,P(B)=,
故恰有2人被选中的概率
P=P(AB )+P(A C)+P( BC)=.
 1.求相互独立事件同时发生的概率的步骤:
(1)首先确定各事件之间是相互独立的;
(2)确定这些事件可以同时发生;
(3)求出每个事件的概率,再求积.
2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.
[跟进训练]
2.在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(1)求甲队获第一名且丙队获第二名的概率;
(2)求在该次比赛中甲队至少得3分的概率.
[解] (1)设甲队获第一名且丙队获第二名为事件A,则P(A)==.
(2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B为“甲两场只胜一场”,设事件C为“甲两场都胜”,则事件“甲队至少得3分”为B∪C,
则P(B∪C)=P(B)+P(C)==.
类型3 相互独立事件概率的实际应用
【例3】 三个元件T1,T2,T3正常工作的概率分别为,将它们中的两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.
[解] 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.
不发生故障的事件为(A2∪A3)A1,
∴不发生故障的概率为
P=P[(A2∪A3)A1]
=P(A2∪A3)·P(A1)
=[1-P()·P()]·P(A1)
==.
 求较为复杂事件的概率的方法
(1)列出题中涉及的各事件,并且用适当的符号表示;
(2)厘清事件之间的关系(两事件是互斥还是对立,或者是相互独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.
[跟进训练]
3.电路从A到B共连接着6个灯泡(如图),每个灯泡断路的概率是,整个电路的连通与否取决于灯泡是否断路,则从A到B连通的概率是(  )
A.   B.
C.   D.
B [由题意知A与C之间未连通的概率是=,连通的概率是1-=.E与F之间连通的概率是=,未连通的概率是1-=,故C与B之间未连通的概率是=,故C与B之间连通的概率是1-=,故A与B之间连通的概率是=,故选B.]
4.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮问题的概率分别为,且各轮问题能否正确回答互不影响.求该选手被淘汰的概率.
[解] 记事件“该选手能正确回答第i轮的问题”为Ai(i=1,2,3),
则P(A1)=,P(A2)=,P(A3)=.
法一:该选手被淘汰的概率为
P()+P(A1)+P(A1A2)
=P()+P(A1)P()+P(A1)P(A2)P()
==.
法二:该选手被淘汰的概率为
1-P(A1A2A3)=1-=.
不同赛制的可靠性探究
乒乓球比赛规则如下:
在一局比赛中,先得11分的一方为胜方,10分平后,先多得2分的一方为胜方;
1场比赛应采用奇数局,如三局两胜制、五局三胜制等;
一场比赛应连续进行,但在局与局之间,任何一方运动员都有权要求不超过1分钟的休息时间.
某校要通过选拔赛选取一名同学参加市级乒乓球单打比赛,选拔赛采取淘汰制,败者直接出局.现有两种赛制方案:三局两胜制和五局三胜制.
1.若甲、乙对决,甲每局获胜的概率为0.6,现采用三局两胜制,则这场比赛中甲获胜的概率是多少?
[提示] 甲、乙两人对决,甲每局获胜的概率为0.6,采用三局两胜制时,甲获胜,其胜局情况是:“甲甲”或“乙甲甲”或“甲乙甲”.而这三种结局互不影响,于是由独立事件的概率公式,得甲最终获胜的概率为P1=0.62+2×0.62×(1-0.6)=0.648.
2.若甲、乙对决,甲每局获胜的概率为0.6,现采用五局三胜制,则这场比赛中甲获胜的概率是多少?
[提示] 甲、乙两人对决,甲每局获胜的概率为0.6,采用五局三胜制,若甲最终获胜,至少需比赛3局,且最后一局必须是甲胜,而前面甲需胜两局,由独立事件的概率公式,得五局三胜制下甲最终获胜的概率为P2=0.63+3×0.63(1-0.6)+6×0.63(1-0.6)2=0.682 56.
3.两选手对决时,选择何种赛制更有利于选拔出实力最强的选手,并说明理由.(各局胜负相互独立,各选手水平互不相同)
[提示] 甲、乙两人对决,若甲更强,则其获胜的概率P>.采用三局两胜制时,若甲最终获胜,其胜局情况是:“甲甲”或“乙甲甲”或“甲乙甲”.而这三种结局互不影响,于是得甲最终获胜的概率为P3=p2+2p2(1-p).
采用五局三胜制,若甲最终获胜,则至少需比赛3局,且最后一局必须是甲胜,而前面甲需胜两局,由此得五局三胜制下甲最终获胜的概率为P4=p3+3p3(1-p)+6p3(1-p)2.而P4-P3=p2(6p3-15p2+12p-3)=3p2(p-1)2(2p-1).
因为P>,所以P4>P3,即五局三胜制下甲最终获胜的可能性更大.
所以五局三胜制更能选拔出最强的选手.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)不可能事件与任何一个事件相互独立. (  )
(2)必然事件与任何一个事件相互独立. (  )
(3)若两个事件互斥,则这两个事件相互独立. (  )
[提示] (1)正确.不可能事件的发生与任何一个事件的发生都没有影响.
(2)正确.必然事件的发生与任何一个事件的发生没有影响.
(3)错误.因为两个事件互斥,所以二者不能同时发生,所以这两个事件不相互独立.
[答案] (1)√ (2)√ (3)×
2.坛子里放有3个白球、2个黑球,从中不放回地摸球,用A1表示第1次摸得白球,A2表示第2次摸得白球,则A1与A2是(  )
A.互斥事件   B.相互独立事件
C.对立事件   D.不相互独立事件
D [由于事件A1是否发生对事件A2发生的概率有影响,所以A1与A2是不相互独立事件.]
3.甲、乙两班各有36名同学,甲班有9名三好学生,乙班有6名三好学生,两班各派1名同学参加演讲活动,派出的恰好都是三好学生的概率是(  )
A.   B.
C.   D.
C [两班各自派出代表是相互独立事件,设事件A,B分别为甲班、乙班派出的是三好学生,则事件AB为两班派出的都是三好学生,则P(AB)=P(A)P(B)==.]
4.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________.
 [由题意知P==.]
5.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为和.在同一时间内,则至少有一个气象台预报准确的概率是________.
 [记“甲气象台预报天气准确”为事件A,“乙气象台预报天气准确”为事件B.
至少有一个气象台预报准确的概率为
P=1-P()=1-P()P()=1-=.]
课时分层作业(四十四) 事件的独立性
一、选择题
1.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是(  )
A.   B.
C.   D.
A [由题意可知,甲、乙同时中靶的概率为=.]
2.如图所示,A,B,C表示3个开关,若在某段时间内,它们正常工作的概率分别为0.9,0.8,0.7,则该系统的可靠性(3个开关只要一个开关正常工作即可靠)为(  )
A.0.504   B.0.994
C.0.496   D.0.064
B [由题意得所求概率为1-(1-0.9)(1-0.8)(1-0.7)=1-0.006=0.994.]
3.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为(  )
A.    B.
C.    D.
C [设甲同学收到李老师的信息为事件A,收到张老师的信息为事件B,A,B相互独立,P(A)=P(B)==,
则甲同学收到李老师或张老师所发活动通知的信息的概率为1-P()=1-[1-P(A)][1-P(B)]=1-=.故选C.]
4.在某道路的A,B,C三处设有交通灯,这三盏灯在1分钟内开放绿灯的时间分别为25秒、35秒、45秒,某汽车在这段道路上匀速行驶,则在这三处都不停车的概率为(  )
A.   B.
C.   D.
C [由题意可知汽车在这三处都不停车的概率为=.]
5.国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为20:20时,获胜的一方需超过对方2分才算取胜,直至双方比分打成29:29时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球贏球的概率为,则在比分为20:20,且甲发球的情况下,甲以23:21赢下比赛的概率为(  )
A.    B.
C.    D.
B [设双方20:20平后的第k个球甲获胜为事件Ak(k=1,2,3,…),
则P(甲以23:21赢)=P(A2A3A4)+P(A1A3A4)=P()P(A2)P(A3)P(A4)+P(A1)·P()P(A3)P(A4)=+=.]
二、填空题
6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为________.
 [设此队员每次罚球的命中率为p,则1-p2=,所以p=.]
7.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是________,三人中至少有一人达标的概率是________.
0.24 0.96 [由题意可知三人都达标的概率为P=0.8×0.6×0.5=0.24;三人中至少有一人达标的概率为P′=1-(1-0.8)×(1-0.6)×(1-0.5)=0.96.]
8.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为________.
 [设事件Ai(i=1,2,3,4)表示“该软件能通过第i轮考核”,
由已知得P(A1)=,P(A2)=,P(A3)=,
P(A4)=,
设事件C表示“该软件至多进入第三轮”,则
P(C)=P(+A1+A1A2)=P()+P(A1)+P(A1A2)
==.]
三、解答题
9.小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率.
[解] 用A,B,C分别表示这三列火车正点到达的事件,
则P(A)=0.8,P(B)=0.7,P(C)=0.9,
所以P()=0.2,P()=0.3,P()=0.1.
(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为
P1=P(BC)+P(AC)+P(AB)=P()·P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.
(2)三列火车至少有一列正点到达的概率为P2=1-P()=1-P()P()P()=1-0.2×0.3×0.1=0.994.
10.甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)2人至少有1人射中目标的概率;
(2)2人至多有1人射中目标的概率.
[解] 设“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,与B,A与与为相互独立事件.
(1)“2人至少有1人射中”包括“2人都中”和“2人恰有1人射中”两种情况,
其概率为P=P(AB)+[P(A)+P(B)]=P(A)P(B)+P(A)P()+P()P(B)=0.8×0.9+0.8×(1-0.9)+(1-0.8)×0.9=0.98.
(2)“2人至多有1人射中目标”包括“有1人射中”和“2人都未射中”两种情况,
故所求概率为P=P()+P(A)+P(B)
=P()·P()+P(A)·P()+P()·P(B)=0.02+0.08+0.18=0.28.
11.在如图所示的电路图中,开关a,b,c闭合与断开的概率都是,且是相互独立的,则灯亮的概率是(  )
A.   B.
C.   D.
B [设开关a,b,c闭合的事件分别为A,B,C,
则灯亮这一事件E=ABC∪AB∪AC,且A,B,C相互独立,ABC,AB,AC互斥,
所以P(E)=P(ABC∪AB∪AC)
=P(ABC)+P(AB)+P(AC)
=P(A)P(B)P(C)+P(A)P(B)P()+P(A)P()P(C)
==.]
12.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)等于(  )
A.   B.
C.   D.
D [由题意,P()·P()=,P()·P(B)=P(A)·P().
设P(A)=x,P(B)=y,


∴x2-2x+1=,
∴x-1=-,或x-1=(舍去),
∴x=.]
13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,且各道工序互不影响,则加工出来的零件的次品率为________.
 [依题意得,加工出来的零件的正品率是=,因此加工出来的零件的次品率是1-=.]
14.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.
0.46 [设“同学甲答对第i个题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.6,P(A3)=0.5,且A1,A2,A3相互独立,
同学甲得分不低于300分对应于事件A1A2A3∪A1A3A2A3发生,
故所求概率为P=P(A1A2A3∪A1A3A2A3)
=P(A1A2A3)+P(A1A3)+P(A2A3)
=P(A1)P(A2)P(A3)+P(A1)P()P(A3)+P()P(A2)P(A3)
=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46.]
15.某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立.根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为0.5,0.6,0.4.第二次选拔,甲、乙、丙三人合格的概率依次为0.6,0.5,0.5.
(1)求第一次选拔后甲、乙两人中只有甲合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;
(3)求甲、乙、丙经过前后两次选拔后,恰有一人合格的概率.
[解] (1)分别设甲、乙经第一次选拔后合格为事件A1,B1;
设E表示第一次选拔后甲合格、乙不合格,则
P(E)=P(A1·)=0.5×0.4=0.2.
(2)分别设甲、乙、丙三人经过前后两次选拔后合格为事件A,B,C,则
P(A)=0.5×0.6=0.3,P(B)=0.6×0.5=0.3,P(C)=0.4×0.5=0.2.
(3)设F表示经过前后两次选拔后,恰有一人合格,
则P(F)=P(A)+P(B)+P(C)
=0.3×0.7×0.8+0.7×0.3×0.8+0.7×0.7×0.2=0.434.(共33张PPT)
§4 事件的独立性
第七章 概率
学习任务 核心素养
1.结合有限样本空间,了解两个随机事件独立性的含义.(难点、易混点)
2.结合古典概型,利用独立性计算概率.(重点) 1.通过对事件独立性概念的学习,培养数学抽象素养.
2.通过计算相互独立事件的概率,培养数学运算素养.
必备知识·情境导学探新知
1.当事件A,B满足什么条件时,事件A与B相互独立?
2.相互独立事件有哪些性质?
3.如何求相互独立事件同时发生的概率?
4.相互独立事件与互斥事件的区别是什么?
相互独立事件的概念和性质
定义 事件A(或B)是否发生对事件B(或A)发生的____没有影响,这样的两个事件叫作相互独立事件
计算
公式 两个相互独立事件同时发生的概率,等于这两个事件发生的概率的积,即P(AB)=_________
性质
概率
P(A)P(B)
思考(1)事件A与B相互独立可以推广到n个事件的一般情形吗?
(2)公式P(AB)=P(A)P(B)可以推广到一般情形吗?
[提示] (1)对于n个事件A1,A2,…,An,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称事件A1,A2,…,An相互独立.
(2)公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).
体验1.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C的关系是(  )
A.A与B,A与C均相互独立
B.A 与B相互独立,A与C互斥
C.A与B,A与C均互斥
D.A与B互斥,A与C相互独立
A [由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.]

体验2.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是(  )
A.0.56   B.0.92   C.0.94   D.0.96
C [∵两人都没有击中的概率为0.2×0.3=0.06,∴目标被击中的概率为1-0.06=0.94.]

关键能力·合作探究释疑难
类型1 相互独立事件的判断
【例1】 判断下列各对事件哪些是互斥事件,哪些是相互独立事件.
(1)掷一枚骰子一次,事件M:“出现的点数为奇数”;事件N:“出现的点数为偶数”;
(2)掷一枚骰子一次,事件A:“出现偶数点”;事件B:“出现3点或6点”.

[跟进训练]
1.甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B(  )
A.相互独立但不互斥
B.互斥但不相互独立
C.相互独立且互斥
D.既不相互独立也不互斥
A [对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.]
[母题探究]
1.(变设问)保持条件不变,求三人均未被选中的概率.
反思领悟 1.求相互独立事件同时发生的概率的步骤:
(1)首先确定各事件之间是相互独立的;
(2)确定这些事件可以同时发生;
(3)求出每个事件的概率,再求积.
2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.
反思领悟 求较为复杂事件的概率的方法
(1)列出题中涉及的各事件,并且用适当的符号表示;
(2)厘清事件之间的关系(两事件是互斥还是对立,或者是相互独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.

阅读材料·拓展数学大视野
不同赛制的可靠性探究
乒乓球比赛规则如下:
在一局比赛中,先得11分的一方为胜方,10分平后,先多得2分的一方为胜方;
1场比赛应采用奇数局,如三局两胜制、五局三胜制等;
一场比赛应连续进行,但在局与局之间,任何一方运动员都有权要求不超过1分钟的休息时间.
某校要通过选拔赛选取一名同学参加市级乒乓球单打比赛,选拔赛采取淘汰制,败者直接出局.现有两种赛制方案:三局两胜制和五局三胜制.
1.若甲、乙对决,甲每局获胜的概率为0.6,现采用三局两胜制,则这场比赛中甲获胜的概率是多少?
[提示] 甲、乙两人对决,甲每局获胜的概率为0.6,采用三局两胜制时,甲获胜,其胜局情况是:“甲甲”或“乙甲甲”或“甲乙甲”.而这三种结局互不影响,于是由独立事件的概率公式,得甲最终获胜的概率为P1=0.62+2×0.62×(1-0.6)=0.648.
2.若甲、乙对决,甲每局获胜的概率为0.6,现采用五局三胜制,则这场比赛中甲获胜的概率是多少?
[提示] 甲、乙两人对决,甲每局获胜的概率为0.6,采用五局三胜制,若甲最终获胜,至少需比赛3局,且最后一局必须是甲胜,而前面甲需胜两局,由独立事件的概率公式,得五局三胜制下甲最终获胜的概率为P2=0.63+3×0.63(1-0.6)+6×0.63(1-0.6)2=0.682 56.
3.两选手对决时,选择何种赛制更有利于选拔出实力最强的选手,并说明理由.(各局胜负相互独立,各选手水平互不相同)
学习效果·课堂评估夯基础
1.思考辨析(正确的画“√”,错误的画“×”)
(1)不可能事件与任何一个事件相互独立. (  )
(2)必然事件与任何一个事件相互独立. (  )
(3)若两个事件互斥,则这两个事件相互独立. (  )
2
4
3
题号
1
5
[提示] (1)正确.不可能事件的发生与任何一个事件的发生都没有影响.
(2)正确.必然事件的发生与任何一个事件的发生没有影响.
(3)错误.因为两个事件互斥,所以二者不能同时发生,所以这两个事件不相互独立.


×
2.坛子里放有3个白球、2个黑球,从中不放回地摸球,用A1表示第1次摸得白球,A2表示第2次摸得白球,则A1与A2是(  )
A.互斥事件   B.相互独立事件
C.对立事件   D.不相互独立事件

2
4
3
题号
1
5
D [由于事件A1是否发生对事件A2发生的概率有影响,所以A1与A2是不相互独立事件.]

2
4
3
题号
1
5
4.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________.
2
4
3
题号
1
5

2
4
3
题号
1
5

展开更多......

收起↑

资源列表