资源简介 中小学教育资源及组卷应用平台小升初必考专题06:解方程-2025年六年级下册通用版1.解比例。 2.解方程。 3.解方程。(1) (2) (3)4.解方程。(1)x+x=16 (2)x-= (3)x÷=5.解方程。x-= 3x-7=23 5x+2x=1406.解方程。(1)2x+5(3x-5)=10-4(2x-10) (2) (3)x∶=(x-)∶7.解方程。9×6+x=76.8 (1-45%)x=110 5.6x+12.88=428.解方程。= x= ÷x=×9.解方程。 10.解方程。 11.解方程。9×1.8-12x=1.8 12.解方程。 13.解方程。 14.解方程。 15.解方程。 6.5x+2.5x=18 x-50%=1.2516.解比例。(1)6.5∶x=3.25∶4 (2) (3)17.解方程或解比例。 18.解方程。 19.解方程。(1)0.3x-0.6=1.8 (2)40%x+26=84 (3)20.解方程。 21.解方程或比例。 22.解方程。∶= -= +25%=4523.解方程。45%x=27 18%x+22%x=12 24.解方程。 《小升初必考专题06:解方程-2025年六年级下册通用版》参考答案1.=56000;=0.024;【分析】(1)根据比例的基本性质:两内项之积等于两外项之积,把等式转化为一般方程,计算等式右边的乘法即可得解。(2)根据比例的基本性质:两内项之积等于两外项之积,把等式转化为一般方程,根据等式的基本性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以100000,即可得解。(3)根据比例的基本性质:两内项之积等于两外项之积,把等式转化为一般方程,先计算等式右边的乘法,再根据等式的基本性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以4,即可得解。【详解】解:解:解:2.;;【分析】根据等式的性质解方程。(1)方程两边同时加上,求出方程的解;(2)方程两边同时减去,求出方程的解;(3)方程两边同时减去,求出方程的解。【详解】(1)解:(2)解:(3)解:3.(1);(2);(3)【分析】(1)先计算分数与整数的乘法,再求出的值,最后方程两边同时除以4,解得未知数的值;(2)方程两边同时乘即可解得未知数的值;(3)方程左边逆用乘法分配律得到,方程两边再同时乘3,即可解得未知数的值。【详解】(1)解:(2)解:(3)解:4.(1)x=;(2)x=;(3)x=【分析】(1)先化简方程,再根据等式的性质,方程两边同时除以即可;(2)根据等式的性质,方程两边同时加上,再同时除以即可;(3)根据等式的性质,方程两边同时乘即可。【详解】(1)x+x=16解:x=16x÷=16÷x=16×x=(2)x-=解:x-+=+x=x÷=÷x=×x=(3)x÷=解:x÷×=×x=5.x=;x=10;x=20【分析】(1)利用等式的性质1,方程两边同时加上;(2)先利用等式的性质1,方程两边同时加上7,再利用等式的性质2,方程两边同时除以3;(3)先化简方程左边含有字母的式子,再利用等式的性质2,方程两边同时除以7。【详解】(1)x-=解:x-+=+x=(2)3x-7=23解:3x-7+7=23+73x=303x÷3=30÷3x=10(3)5x+2x=140解:7x=1407x÷7=140÷7x=206.(1)x=3;(2)x=200;(3)x=22【分析】(1)先化简方程,再根据等式的性质,方程两边同时加上25,再同时加上8x,最后同时除以25即可;(2)先化简方程,再根据等式的性质,方程两边同时减去20,再同时除以0.4即可;(3)先根据比例的基本性质,把式子化为x=(x-5),再化简方程,最后根据等式的性质,方程两边同时减去x,再同时加上,最后同时除以即可。【详解】(1)2x+5(3x-5)=10-4(2x-10)解:2x+(15x-25)=10-(8x-40)2x+15x-25=10-8x+4017x-25=50-8x17x-25+25=50-8x+2517x=75-8x17x+8x=75-8x+8x25x=7525x÷25=75÷25x=3(2)0.4x+20=80×解:0.4x+20=1000.4x+20-20=100-200.4x=800.4x÷0.4=80÷0.4x=200(3)x∶=(x-5)∶解:x=(x-5)x=x-x-x=x-x-x-=0x-+=0+x=x÷=÷x=×6x=227.x=22.8;x=200;x=32;x=5.2【分析】(1)先计算等式左边的乘法,再根据等式的性质1:等式的左右两边同时加上(或减去)同一个数,等式仍然成立,等式两边同时减54,计算即可得解;(2)先计算等式左边括号里面的减法,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以0.55,计算即可得解;(3)先计算等式左边的减法,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以,计算即可得解;(4)根据等式的性质1:等式的左右两边同时加上(或减去)同一个数,等式仍然成立,等式两边同时减12.88;再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以5.6,计算即可得解。【详解】9×6+x=76.8解:54+x=76.8x=76.8-54x=22.8(1-45%)x=110解:0.55x=110x=110÷0.55x=200解:5.6x+12.88=42解:5.6x=42-12.885.6x=29.12x=29.12÷5.6x=5.28.x=1.2;x=;x=【分析】=,根据等式的性质2,方程两边同时乘x,再同时除以 即可;x=,根据等式的性质2,方程两边同时除以即可;÷x=×,先计算出×的积,再根据等式的性质2,方程两边同时乘x,再同时除以×的积即可。【详解】=解: ×x÷ = ×x÷ x=3÷ x=3× x=1.2x=解:x÷=÷x=×x=÷x=×解:÷x=÷x×x÷=÷×xx=×4x=9.;;【分析】(1)先计算的结果,再利用等式的性质2,等式两边同时除以;(2)先将化成小数0.2,再利用等式的性质1,等式两边同时加上,再同时减去20,最后再利用等式的性质2,等式两边同时除以0.2;(3)先计算得,再利用等式的性质2,等式两边同时除以1.125。据此解答即可。【详解】解:解:解:10.x=6;x=12;x=【分析】利用等式的性质1,先在等式的左右两边同时减去,再利用等式的性质2在等式的左右两边同时除以;先将等式的左边化简为,再利用等式的性质2在等式的左右两边同时除以 ;先计算小括号里面的减法,再利用等式的性质2在等式的左右两边同时除以。【详解】解:解:解:11.x=1.2;x=;x=20【分析】(1)先计算等式左边的乘法,根据减数等于被减数减差,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式两边同时除以12,等式仍然成立,计算即可得解;(2)先计算等式左边的加法,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式两边同时除以,等式仍然成立,计算即可得解;(3)先计算等式左边的乘法,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式两边同时乘,等式两边再同时除以,等式仍然成立,计算即可得解。【详解】9×1.8-12x=1.8解:16.2-12x=1.816.2-12x+12x=1.8+12x1.8+12x=16.21.8+12x-1.8=16.2-1.812x=14.412x÷12=14.4÷12x=1.2解:x=x÷=÷x=×x=解:=5÷32x=5÷32x×32x=×32xx=5x÷=5÷x=5×4x=2012.;;【分析】,根据等式的性质1,将方程左右两边同时减去即可;,先把带分数化为假分数,然后根据等式的性质1,将方程左右两边同时加上即可;,根据等式的性质1和2,将方程左右两边同时除以2,再同时减去即可。【详解】解:解:解:13.x=;x=9.6;x=3.75【分析】(1)先计算等式左边的加法,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以,计算即可得解;(2)先根据乘法分配律,分别用x乘,9乘,先计算,再根据等式的性质1:等式的左右两边同时加上(或减去)同一个数,等式仍然成立,等式两边同时加12,再根据等式的性质2:等式的左右两边同时乘(或除以)同一个不为0的数,等式仍然成立,等式两边同时除以,计算即可得解;(3)根据比与除法的关系,把等式转化为除法的形式,再根据除数等于被除数除以商,计算即可得解。【详解】解:解:解:14.=;=4;=【分析】(1)利用比与除法的关系,把方程左边的比转化为除法,再把方程左右两边同时乘,求出方程的解;(2)把方程左右两边同时加上,再交换方程左右两边的式子,方程左右两边同时减去0.6,再把方程左右两边同时除以,求出方程的解;(3)先计算方程右边的除法,再把方程左右两边同时乘,最后把方程两边同时除以,求出方程的解。【详解】解:解:解:15.x=1;x=2;x【分析】根据比例的基本性质,先把比例化为方程:5x=×18,两边再同时除以5;先把方程左边化简为9x,两边再同时除以9;方程两边同时加上50%,两边再同时乘。【详解】∶5=x∶18解:5x=×185x=55x÷5=5÷5x=16.5x+2.5x=18解:9x=189x÷9=18÷9x=2x-50%=1.25解:x-50%+50%=1.25+50%x=1.75×x=1.75×x16.(1);(2);(3)【分析】(1)根据比例的基本性质,把式子转化为3.25x=6.5×4,再化简方程,最后根据等式的性质,方程两边同时除以3.25即可;(2)根据比例的基本性质,把式子转化为3x=2×0.9,再化简方程,最后根据等式的性质,方程两边同时除以3即可;(3)根据比例的基本性质,把式子转化为90%x=×,再化简方程,最后根据等式的性质,方程两边同时除以0.9即可。【详解】(1)6.5∶x=3.25∶4解:3.25x=6.5×43.25x=263.25x÷3.25=26÷3.25x=8(2)解:3x=2×0.93x=1.83x÷3=1.8÷3x=0.6(3)解:90%x=×0.9x=0.9x÷0.9=÷0.9x=×x=17.x=0.6;x=1.25;x=【分析】(1)根据比例的基本性质可得:7.5x=1.5×3,再根据等式的性质,把方程两边同时除以7.5即可解答;(2)方程两边同时减去,再同时除以40%即可解答;(3)根据比例的基本性质可得:x=,再把方程两边同时乘10即可解答。【详解】 解:7.5x=1.5×37.5x=4.57.5x÷7.5=4.5÷7.5x=0.6 解: 40%x=40%x÷40%=÷40%x=0.5÷0.4x=1.25 解:x=x×10=×10x=18.;;【分析】(1)125%=1.25,据此先把方程左边化简为0.75x,再根据等式的性质,方程两边同时除以0.75即可解答;(2)先计算2.6×5=13,方程两边同时减去13,再同时除以5即可解答;(3)根据比例的基本性质可得:x=,方程两边同时乘即可解出比例。【详解】解:2x-1.25x=150.75x=150.75x÷0.75=15÷0.75x=20 解:13+5x=2913+5x-13=29-135x=165x÷5=16÷5x=3.2 解:x=x=x×=×x=319.(1)x=8;(2)x=145;(3)x=20【分析】(1)根据等式的性质,方程两边同时加上0.6,再同时除以0.3即可;(2)根据等式的性质,方程两边同时减去26,再同时除以40%即可;(3)根据比例的基本性质,把式子转化为x=12×,再化简方程,最后根据等式的性质,方程两边同时除以即可。【详解】(1)0.3x-0.6=1.8解:0.3x-0.6+0.6=1.8+0.60.3x=2.40.3x÷0.3=2.4÷0.3x=8(2)40%x+26=84解:40%x+26-26=84-2640%x=5840%x÷40%=58÷40%x=145(3)解:x=12×x=10x÷=10÷x=10×2x=2020.x=200;x=5;x=2【分析】先计算方程左边的x-35%x,再将65%转化成小数,根据等式的基本性质,方程两边同时除以0.65计算即可;根据等式的基本性质,方程两边同时加上120%x,将120%转化成小数,方程两边再同时减去6,再同时除以1.2计算即可;先将45%转化成小数,先计算方程左边的2.5x-0.45x,再根据等式的基本性质,方程两边同时除以2.05计算即可。【详解】解:65%x=1300.65x=130x=130÷0.65x=200解:12-120%x+120%x=6+120%x6+120%x=126+1.2x=126+1.2x-6=12-61.2x=6x=6÷1.2x=5解:2.5x-0.45x=4.12.05x=4.1x=4.1÷2.05x=221.;;【分析】,根据比例的基本性质,改写成,方程两边同时除以0.8,方程得解;,方程两边同时减0.6后再同时乘6,方程得解;,根据乘法分配律得,方程两边同时加3后再同时乘,方程得解。【详解】解: 解:解:22.x=;x=;x=44.75【分析】根据比与除法的关系,将原式改成÷x=,再根据等式的性质,方程两边先同时乘x,再同时除以计算即可;先计算方程左边的减法,-=x,再根据等式的性质,方程两边同时除以计算即可;将25%转化成小数,根据等式的性质,方程两边同时减去0.25计算即可。【详解】∶=解:÷x=÷x×x=×xx=x=÷x=×3x=-=解:x=x=÷x=×4x=+25%=45解:x+0.25=45x+0.25-0.25=45-0.25x=44.7523.x=60;x=30;x=【分析】(1)根据等式的性质2,方程的两边同时除以45%即可;(2)合并方程左边同类项,再根据等式的性质2,方程的两边同时除以(18%+22%)的和即可;(3)合并方程左边同类项,再根据等式的性质2,方程的两边同时除以的差即可。【详解】(1)解:(2)解:(3)解:24.;;【分析】(1)先把方程化简成,然后方程两边同时除以,求出方程的解;(2)先把方程化简成,然后方程两边同时除以,求出方程的解;(3)先把方程化简成,然后方程两边同时除以,求出方程的解。【详解】(1)解:(2)解:(3)解:21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览