资源简介 (共33张PPT)27.3.1 位似第二十七章 相似人教版数学九年级下册授课教师:********班 级:********时 间:********学习目标了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.互逆命题、互逆定理教案一、教学目标知识与技能目标理解互逆命题、互逆定理的概念,能准确说出一个命题的逆命题。会判断一个命题及它的逆命题的真假性,掌握证明命题真假的方法。过程与方法目标通过对命题、逆命题的分析,培养学生的逻辑思维能力和语言表达能力。经历探究互逆定理的过程,体会从特殊到一般的数学思想。情感态度与价值观目标培养学生积极参与数学活动,敢于质疑、勇于探索的精神。让学生感受数学知识的严谨性和逻辑性,体会数学的应用价值。二、教学重难点重点互逆命题、互逆定理的概念及命题真假的判断。能正确写出一个命题的逆命题。难点判断一个命题的逆命题的真假性,理解原命题为真,其逆命题不一定为真。用逻辑推理的方法证明命题的真假。三、教学方法讲授法、讨论法、练习法相结合四、教学过程(一)导入新课(5 分钟)展示一些简单的命题,如 “如果两个角是对顶角,那么这两个角相等” ,“如果 a=b,那么 a =b ”。引导学生分析这些命题的题设和结论。提问:能否交换这些命题的题设和结论,得到新的命题?新命题是否成立?从而引出本节课的课题 —— 互逆命题、互逆定理。(二)讲授新课(25 分钟)互逆命题给出互逆命题的定义:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。举例说明:如原命题 “如果两个角是直角,那么这两个角相等”,它的逆命题是 “如果两个角相等,那么这两个角是直角” 。让学生进一步理解互逆命题的概念。组织学生进行小组讨论,每个小组写出 3 - 5 个命题,并交换写出它们的逆命题。命题真假的判断引导学生思考如何判断一个命题的真假。对于真命题,需要通过推理证明;对于假命题,只需举一个反例即可。以刚才的命题为例,分析原命题和逆命题的真假性。如 “如果两个角是直角,那么这两个角相等” 是真命题,而它的逆命题 “如果两个角相等,那么这两个角是直角” 是假命题,因为两个相等的角不一定是直角,还可能是锐角或钝角等。让学生自己判断之前小组讨论中写出的命题及其逆命题的真假性,并在小组内交流。互逆定理给出互逆定理的定义:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。举例说明:如 “两直线平行,同位角相等” 和 “同位角相等,两直线平行” 是互逆定理。强调:并不是所有的定理都有逆定理,只有当定理的逆命题为真命题时,才有逆定理。(三)例题讲解(15 分钟)例 1:写出下列命题的逆命题,并判断其真假。(1)如果 a = 0,那么 ab = 0。(2)全等三角形的对应角相等。(3)等腰三角形的两个底角相等。分析:(1)逆命题为 “如果 ab = 0,那么 a = 0”,这是假命题,因为当 b = 0 时,ab = 0,a 不一定为 0。(2)逆命题为 “对应角相等的三角形是全等三角形”,这是假命题,因为对应角相等的三角形不一定全等,可能是相似三角形。(3)逆命题为 “有两个角相等的三角形是等腰三角形”,这是真命题,它是等腰三角形的判定定理。例 2:证明命题 “如果一个三角形的两个角相等,那么这两个角所对的边也相等” 是真命题。分析:引导学生画出图形,写出已知、求证,然后进行证明。已知:在△ABC 中,∠B = ∠C。求证:AB = AC。证明:作∠BAC 的平分线 AD,交 BC 于点 D。因为 AD 平分∠BAC,所以∠BAD = ∠CAD。在△ABD 和△ACD 中,∠B = ∠C,∠BAD = ∠CAD,AD = AD(公共边),所以△ABD≌△ACD(AAS)。所以 AB = AC。(四)课堂练习(10 分钟)写出下列命题的逆命题,并判断真假。(1)如果 x = 2,那么 x = 4。(2)直角三角形的两个锐角互余。(3)对顶角相等。判断下列说法是否正确:(1)每个命题都有逆命题。(2)每个定理都有逆定理。(3)真命题的逆命题一定是真命题。(4)假命题的逆命题一定是假命题。(五)课堂小结(5 分钟)与学生一起回顾互逆命题、互逆定理的概念,以及如何判断命题的真假。强调:原命题为真,逆命题不一定为真;原命题为假,逆命题也不一定为假。(六)布置作业(5 分钟)课本课后习题,要求学生认真书写解题过程,判断命题真假时要说明理由。拓展作业:收集生活中或数学学习中至少两个互逆命题,并分析它们的真假性。五、教学反思在教学过程中,要注重引导学生积极思考、主动参与,通过实际例子帮助学生理解抽象的概念。对于学生在判断命题真假和写逆命题时容易出现的错误,要及时给予纠正和指导。在今后的教学中,可以进一步加强练习,提高学生的逻辑思维能力和解决问题的能力。5课堂检测4新知讲解6变式训练7中考考法8小结梳理9布置作业学习目录1复习引入2新知讲解3典例讲解导入新知相似图形这种相似有什么特征?相似图形导入新知这种相似有什么特征?照相机把人物的影像缩小到底片上相似图形导入新知这种相似有什么特征?1. 在幻灯机放映图片的过程中,这些图片有什么关系?2. 幻灯机在哪儿呢?3.我们能给这种有特殊位置的相似图形一个名称吗?导入新知下列图形中有相似多边形吗?如果有,那么这种相似有什么特征?探究新知知识点 1位似的定义【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?两个相似多边形,如果它们对应顶点的连线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心.探究新知【方法总结】判断两个图形是不是位似图形,需要从两方面去考察:(1)这两个图形是否相似;(2)是否有特殊的位置关系,即每组对应顶点的连线是否都经过同一点.位似是一种具有位置关系的相似.位似图形是相似图形的特殊情形.位似图形必定是相似图形,而相似图形不一定是位似图形.两个位似图形的位似中心只有一个.两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧.注意探究新知画出下列图形的位似中心:巩固练习O乙O甲如图,BC∥ED,下列说法不正确的是 ( )A. 两个三角形是位似图形B. 点 A 是两个三角形的位似中心C. B 与 D、C 与 E是对应位似点D. AE : AD是相似比DDEABC巩固练习从左图中我们可以看到,△OAB∽△OA′B′,则 ,AB∥A′B′. 右图呢?你得到了什么?ABECDOA′B′C′D′E′ABCOA′B′C′探究新知知识点 2位似图形的性质【总结】位似图形的所有对应点的连线交于一点.位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.位似图形的相似比也叫做位似比,位似图形上任意一对对应点到位似中心的距离之比等于位似比.探究新知【思考】位似图形和相似图形有什么联系和区别?位似图形有何性质?如图,四边形木框 ABCD 在灯泡发出的光照射下形成的影子是四边形 A′B′C′D′,若 OB : OB′=1 : 2,则四边形 ABCD 的面积与四边形A′B′C′D′的面积比为 ( )A.4∶1 B.C. D.1∶4D巩固练习O2. 分别在线段OA、OB、OC、OD上取点A'、B'、C'、D',使得3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.ODABCA'B'C'D'利用位似可以把一个图形放大或缩小.例如,要把四边形ABCD按相似比 缩小 ,1. 在四边形外任选一点O(如图),知识点 3位似图形的画法探究新知【思考】对于上面的问题,还有其他方法吗?如果在四边形外任选一个点 O,分别在 OA、OB、OC、OD 的反向延长线上取 A′ 、B′ 、C′、D′,使得 呢?如果点 O 取在四边形 ABCD 内部呢?分别画出这时得到的图形.探究新知ODABCA'B'C'D'ODABCA'B'C'D'探究新知画位似图形的一般步骤:探究新知归纳总结① 确定位似中心;② 分别连接位似中心和能代表原图的关键点并延长;③ 根据相似比,确定能代表所作的位似图形的关键点;④ 顺次连接上述各点,得到放大或缩小的图形.探究新知方法点拨画位似图形时,需要注意的事项:(1)要弄清位似比,即分清是已知图形与新图形的相似比,还是新图形与原图形的相似比.(2)若问题没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心画图最简捷.如图,以O为位似中心,将△ABC按相似比2放大.OABC画法:①作射线OA 、OB 、 OC ;②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得③顺次连结A' 、B' 、C' 就是所要求图形.A'B'C'巩固练习1.如图是△DEF是△ABC的位似图形的几种画法,其中正确的个数是( )A.4B.3C.2D.1【点拨】【答案】A第一个图形中的位似中心为点A,第二个图形中的位似中心为AD所在的直线与BC的交点,第三个图形中的位似中心为点O,第四个图形中的位似中心为点O.故选A.【点方法】判断两个图形是不是位似图形,需要从两方面去考察:(1)这两个图形是否相似;(2)是否有特殊的位置关系,即每组对应顶点的连线是否都经过同一点.返回2.[2024金华期末]如图,△ABC与△DEF是位似图形,点O是位似中心,若OA=2AD,S△ABC=4,则S△DEF等于( )A.6B.8C.9D.12【点拨】【答案】C∵OA=2AD,∴OA:OD=2:3.又∵△ABC与△DEF是位似图形,点O是位心中心,∴△ABC与△DEF的相似比为2:3.∴△ABC与△DEF的面积比为4:9.又∵△ABC的面积为4,∴△DEF的面积为9.故选C.返回24[变式]如图,△ABC与△DEF是位似图形,位似中心为点O,且OD=3OA,若△ABC的面积为3,则阴影部分的面积是________.【点拨】返回83.《墨子·天志(上)》记载:“轮匠执其规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的周长为4,以它的对角线的交点为位似中心,作它的位似图形,即正方形A′B′C′D′,若A′B′:AB=2:1,则正方形A′B′C′D′的周长为________.【点拨】根据题意知,正方形ABCD∽正方形A′B′C′D′,且相似比为AB:A′B′=1:2,∴正方形ABCD的周长?正方形A′B′C′D′的周长=AB:A′B′=1:2.∵正方形ABCD的周长为4,∴正方形A′B′C′D′的周长为8.【点方法】位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.位似图形的相似比也叫做位似比,位似图形上任意一对对应点到位似中心的距离之比等于相似比.返回. .位似的概念及画法位似图形的概念位似图形的性质画位似图形课堂小结谢谢观看! 展开更多...... 收起↑ 资源预览