资源简介
8.1 统计
一、选择题
1.(2024·贵州)为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )
A.100人 B.120人 C.150人 D.160人
2.(2024·广东广州)为了解公园用地面积(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )
A.的值为20
B.用地面积在这一组的公园个数最多
C.用地面积在这一组的公园个数最少
D.这50个公园中有一半以上的公园用地面积超过12公顷
3.(2023·浙江湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是( )
A.25立方米 B.30立方米 C.32立方米 D.35立方米
4.(2024·内蒙古赤峰)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )
视力 4.7以下 4.7 4.8 4.9 4.9以上
人数 39 41 33 40 47
A.120 B.200 C.6960 D.9600
5.(2024·内蒙古赤峰)在数据收集、整理、描述的过程中,下列说法错误的是( )
A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50
B.了解某校一个班级学生的身高情况,适合全面调查
C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性
D.甲、乙二人10次测试的平均分都是96分,且方差,,则发挥稳定的是甲
6.(2024·内蒙古呼伦贝尔)下列说法正确的是( )
A.任意画一个三角形,其内角和是是必然事件
B.调查某批次汽车的抗撞击能力,适宜全面调查.
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐
7.(2024·山东济宁)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )
A.班主任采用的是抽样调查 B.喜爱动画节目的同学最多
C.喜爱戏曲节目的同学有6名 D.“体育”对应扇形的圆心角为
8.(2024·内蒙古呼和浩特)为了解某小区居民的家庭月平均用水量的情况,物业公司从该小区1500户家庭中随机抽取150户家庭进行调查,统计了他们的月平均用水量,将收集的数据整理成如下的统计图表:
月平均用水量x(吨) 频数
15
a
32
40
33
总计 150
根据统计图表得出以下四个结论,其中正确的是( )
A.本次调查的样本容量是1500
B.这150户家庭中月平均用水量为的家庭所占比例是
C.在扇形统计图中,月平均用水量为的家庭所对应圆心角的度数是
D.若以各组组中值(各小组的两个端点的数的平均数)代表各组的实际数据,则这150户家庭月平均用水量的众数是12
9.(2023·内蒙古赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑,某校对全校名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是( )
A.样本容量是 B.样本中C等级所占百分比是
C.D等级所在扇形的圆心角为 D.估计全校学生A等级大约有人
10.(2023·四川雅安)某位运动员在一次射击训练中,次射击的成绩如图,则这10次成绩的平均数和中位数分别是( )
A., B., C., D.,
11.(2023·辽宁沈阳)下列说法正确的是( )
A.将油滴入水中,油会浮在水面上是不可能事件
B.抛出的篮球会下落是随机事件
C.了解一批圆珠笔芯的使用寿命,采用普查的方式
D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定
12.(2023·海南)水是生命之源.为了倡导节约用水,随机抽取某小区7户家庭上个月家里的用水量情况(单位:吨),数据为:7,5,6,8,9,9,10.这组数据的中位数和众数分别是( )
A.9,8 B.9,9 C.8.5,9 D.8,9
13.(2024·江苏镇江)下列各项调查适合普查的是( )
A.长江中现有鱼的种类 B.某班每位同学视力情况
C.某市家庭年收支情况 D.某品牌灯泡使用寿命
14.(2023·青海西宁)下列说法正确的是( )
A.检测“神州十六号”载人飞船零件的质量,应采用抽样调查
B.任意画一个三角形,其外角和是是必然事件
C.数据4,9,5,7的中位数是6
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
15.(2023·辽宁丹东)某校拟派一名跳高运动员参加一项校际比赛,对4名跳高运动员进行了多次选拔比赛,他们比赛成绩的平均数和方差如下表:
甲 乙 丙 丁
平均数 169 168 169 168
方差 6.0 17.3 5.0 19.5
根据表中数据,要从中选择一名平均成绩好,且发挥稳定的运动员参加比赛,最合适的人选是( )
A.甲 B.乙 C.丙 D.丁
16.(2024·江苏无锡)一组数据:31,32,35,37,35,这组数据的平均数和中位数分别是( )
A.34,34 B.35,35 C.34,35 D.35,34
17.(2024·江苏徐州)铜桐收藏有枚南宋铁钱“庆元通宝”(如图所示),测得它们的质量(单位:)分别为、、、、、、.这组数据的中位数为( )
A. B. C. D.
18.(2024·山东日照)某班40名同学一周参加体育锻炼的时间统计图如图所示,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A., B., C., D.,
19.(2024·山东德州)甲、乙、丙三名射击运动员分别进行了5次射击训练,成绩(单位:环)如下表所示:
甲
乙
丙
则三名运动员中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.无法确定
20.(2024·山东淄博)数学兴趣小组成员小刚对自己的学习质量进行了测试.如图是他最近五次测试成绩(满分为100分)的折线统计图,那么其平均数和方差分别是( )
A.95分, B.96分, C.95分,10 D.96分,10
21.(2023·四川甘孜)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.
成绩/米
人数 2 3 5 4 1
这些运动员成绩的众数和中位数分别为( )
A.米,米 B.米,米
C.米,米 D.米,米
22.(2024·四川雅安)某校开展了红色经典故事演讲比赛,其中8名同学的成绩(单位:分)分别为:85,81,82,86,82,83,92,89.关于这组数据,下列说法中正确的是( )
A.众数是92 B.中位数是
C.平均数是84 D.方差是13
二、填空题
23.(2023·广东广州)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a的值为 .若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为 .
24.(2024·西藏)甲、乙、丙三名学生参加仰卧起坐体育项目测试,他们一周测试成绩的平均数相同,方差如下:,,.则甲、乙、丙中成绩最稳定的学生是 .
25.(2024·广西)八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有 种.
26.(2023·山东青岛)小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,.这六个分数的极差是 分.
27.(2023·江苏淮安)将甲、乙两组各10个数据绘制成折线统计图(如图),两组数据的平均数都是7,设甲、乙两组数据的方差分别为,则 (填“”“”或“”).
28.(2023·辽宁丹东)某青年排球队有12名队员,年龄的情况如下表:
年龄/岁 18 19 20 21 22
人数 3 5 2 1 1
则这12名队员年龄的中位数是 岁.
29.(2024·山东东营)4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是 小时.
时间(小时) 0.5 1 1.5 2 2.5
人数(人) 10 18 12 6 4
30.(2024·江苏镇江)小丽6次射击的成绩如图所示,则她的射击成绩的中位数为 环.
31.(2024·江苏镇江)一组数据:1、1、1、2、5、6,它们的众数为 .
32.(2024·北京)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g),得到的数据如下:
50.03 49.98 50.00 49.99 50.02
49.99 50.01 49.97 50.00 50.02
当一个工件的质量(单位:g)满足时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是 .
33.(2024·甘肃兰州)甲,乙两人在相同条件下各射击10次,两人的成绩(单位:环)如图所示,现有以下三个推断:
①甲的成绩更稳定;
②乙的平均成绩更高;
③每人再射击一次,乙的成绩一定比甲高.其中正确的是 .(填序号)
34.(2024·山东青岛)图①和图②中的两组数据,分别是甲、乙两地年月日至日每天的最高气温,设这两组数据的方差分别为,,则 .(填“”,“”,“”)
三、解答题
35.(2023·内蒙古)在推进碳达峰、碳中和进程中,我国新能源汽车产销两旺,连续8年保持全球第一.图为我国某自主品牌车企2022年下半年新能源汽车的月销量统计图.
请根据所给信息,解答下列问题:
(1)通过计算判断该车企2022年下半年的月均销量是否超过20万辆;
(2)通过分析数据说明该车企2022年下半年月销量的特点(写出一条即可),并提出一条增加月销量的合理化建议.
36.(2023·宁夏)学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩(单位:分)进行统计:
七年级 86 94 79 84 71 90 76 83 90 87
八年级 88 76 90 78 87 93 75 87 87 79
整理如下:
年级 平均数 中位数 众数 方差
七年级 84 90
八年级 84 87
根据以上信息,回答下列问题:
(1)填空:_______,________.
同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;
(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;
(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.
37.(2023·黑龙江哈尔滨)军乐中学开展以“我最喜欢的劳动实践课”为主题的调查活动,围绕“在园艺课,泥塑课,编织课、烹饪课四门劳动实践课中,你最喜欢哪一门课?(必选且只选一门)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢泥塑课的学生人数占所调查人数的.
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若军乐中学共有1200名学生,请你估计该中学最喜欢烹任课的学生共有多少名.
38.(2023·辽宁阜新)端午节是中华民族的传统节日,节日里吃粽子是传统习俗.为了了解附近居民对A(肉粽子),B(蛋黄粽子).C(红枣粽子),D(葡萄干粽子)四种口味粽子的喜爱情况,某商场随机抽取了某小区的部分居民进行问卷调查(每人只能选一种口味),并将调查结果绘制成如下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)参加此次问卷调查的居民共有______人.
(2)通过计算将条形统计图补充完整.
(3)若该小区共有2000名居民,请估计喜爱A(肉粽子)的居民约有多少人.
39.(2023·浙江湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的类,将抽查结果绘制成如下统计图(不完整).
被抽查学生最喜欢的书籍种类的 条形统计图 被抽查学生最喜欢的书籍种类的 扇形统计图
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并求出扇形统计图中m的值.
(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.
40.(2024·广西)某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:
进球数 0 1 2 3 4 5
人数 1 8 6 3 1 1
(1)求被抽取的20名女同学进球数的众数、中位数、平均数;
(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.
41.(2024·浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
科学活动喜爱项目调查问卷 以下问题均为单选题,请根据实际情况填写. 问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是( ) (A)科普讲座 (B)科幻电影 (C)AI应用 (D)科学魔术 如果问题1选择C.请继续回答问题2. 问题2:你更关注的应用是( ) (E)辅助学习 (F)虚拟体验 (G)智能生活 (H)其他
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“应用”的学生中更关注“辅助学习”有多少人?
(2)学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
42.(2024·黑龙江大兴安岭地)为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:
组别 分组(cm) 频数
A 3
B m
C 20
D 14
E 5
(1)频数分布表中 ,扇形统计图中 .
(2)本次调查立定跳远成绩的中位数落在 组别.
(3)该校有600名男生,若立定跳远成绩大于200cm为合格,请估计该校立定跳远成绩合格的男生有多少人?
43.(2024·黑龙江牡丹江)某校为掌握学生对垃圾分类的了解情况,在全校范围内抽取部分学生进行调查问卷,并将收集到的信息进行整理,绘制成如图所示不完整的统计图,其中A为“非常了解”,B为“了解较多”,C为“基本了解”,D为“了解较少”.请你根据图中提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生;
(2)补全条形统计图,并求出扇形统计图中“了解较少”所对应的圆心角度数;
(3)若全校共有1200名学生,请估计全校有多少名学生“非常了解”垃圾分类问题.
44.(2024·甘肃兰州)为落实“双减”政策,培养德智体美劳全面发展的时代新人,某校组织调研学生体育和美育发展水平,现从七年级共180名学生中随机抽取20名学生,对每位学生的体育和美育水平进行测评后按百分制分数量化,并进行等级评定(成绩用x表示,分为四个等级,包括优秀:;良好:;合格:;待提高:).对数据进行整理,描述和分析,部分信息如下.
信息一:体育成绩的人数(频数)分布图如下.
信息二:美育成绩的人数(频数)分布表如下.
分组
人数 m 7 2 7
信息三:20位学生的体育成绩和美育成绩得分统计如下(共20个点).
根据以上信息,回答下列问题:
(1)填空:______;
(2)下列结论正确的是______;(填序号)
①体育成绩低于80分的人数占抽取人数的;
②参与测评的20名学生美育成绩的中位数对应的等级是“合格”;
③在信息三中,相比于点A所代表的学生,点B所代表的学生的体育水平与其大致相同,但美育水平还存在一定差距,需要进一步提升;
(3)请结合以上信息,估计七年级全体学生中体育和美育两项成绩均属于“优秀”等级的人数.
45.(2024·江苏常州)某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:
完全充放电次数t
充电宝数量/个 2 3 10 5
(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;
(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);
①这20个充电宝的完全充放电次数都不低于300次;
②这20个充电宝的完全充放电次数t的中位数满足;
③这20个充电宝的完全充放电次数t的平均数满足.
(3)估计这批充电宝中完全充放电次数在600次及以上的数量.
46.(2024·江苏宿迁)某校为丰富学生的课余生活,开展了多姿多彩的体育活动,开设了五种球类运动项目:A篮球,B足球,C排球,D羽毛球,E乒乓球.为了解学生最喜欢以上哪种球类运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并绘制了统计图:
某同学不小心将图中部分数据丢失,请结合统计图,完成下列问题:
(1)本次调查的样本容量是________,扇形统计图中C对应圆心角的度数为________
(2)请补全条形统计图;
(3)若该校共有2000名学生,请你估计该校最喜欢“E乒乓球”的学生人数.
47.(2024·黑龙江大庆)根据教育部制定的《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织学生参加了国防知识竞赛,将学生的百分制成绩(x分)用5级记分法呈现:“”记为1分,“”记为2分,“”记为3分,“”记为4分,“”记为5分.现随机将全校学生以20人为一组进行分组,并从中随机抽取了3个小组的学生成绩进行整理,绘制统计图表,部分信息如下:
平均数 中位数 众数
第1小组 3.9 4 a
第2小组 b 3.5 5
第3小组 3.25 c 3
请根据以上信息,完成下列问题:
(1)①第2小组得分扇形统计图中,“得分为1分”这一项所对应的圆心角为______度;
②请补全第1小组得分条形统计图;
(2)______,______,______;
(3)已知该校共有4200名学生,以这3个小组的学生成绩作为样本,请你估计该校有多少名学生竞赛成绩不低于90分?
48.(2023·黑龙江大庆)为了解我校学生本学期参加志愿服务的情况,随机调查了我校的部分学生,根据调查结果,绘制出如图统计图,若我校共有1000名学生,请根据相关信息,解答下列问题:
(1)本次接受调查的学生人数为________,扇形统计图中的________;
(2)求所调查的学生本学期参加志愿服务次数的平均数;
(3)学校为本学期参加志愿服务不少于7次的学生颁发“志愿者勋章”,请估计我校获“志愿者勋章”的学生人数.
49.(2023·辽宁沈阳)“书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)此次被调查的学生人数为______ 名;
(2)请直接补全条形统计图;
(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;
(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.
50.(2023·山东潍坊)某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级的学生投稿情况进行调查.
【数据的收集与整理】
分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.
投稿篇数(篇) 1 2 3 4 5
七年级频数(人) 7 10 15 12 6
八年级频数(人) 2 10 13 21 4
【数据的描述与分析】
(1)求扇形统计图中圆心角的度数,并补全频数直方图.
(2)根据频数分布表分别计算有关统计量:
统计量 中位数 众数 平均数 方差
七年级 3 3 1.48
八年级 m n 3.3 1.01
直接写出表格中m、n的值,并求出.
【数据的应用与评价】
(3)从中位数、众数、平均数、方差中,任选两个统计量,对七、八年级学生的投稿情况进行比较,并做出评价.
51.(2023·辽宁锦州)2023年,教育部等八部门联合印发了《全国青少年学生读书先去实施方案》,某校为落实该方案,成立了四个主题阅读社团:A.民俗文化,B.节日文化,C.古曲诗词,D.红色经典.学校规定:每名学生必须参加且只能一个社团.学校随机对部分学生选择社团的情况进了调查.下面是根据调查结果绘制的两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次随机调查的学生有 名,在扇形统计图中“A”部分圆心角的度数为 ;
(2)通过计算补全条形统计图;
(3)若该校共有1800名学生,请根据以上调查结果,估计全校参加“D”社团的人数.
52.(2023·湖南湘西)某校计划开展以弘扬“文化自信”为主题的系列才艺展示活动,要求每位学生从绘画、合唱、朗诵、书法中自主选择其中一项参加活动为此,学校从全体学生中随机抽取了部分学生进行问卷调查,根据统计的数据,绘制了如下图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中所提供的信息,完成下列问题:
(1)该校此次调查共抽取了__________名学生;
(2)在扇形统计图中,“书法”部分所对应的圆心角的度数为__________.
(3)请补全条形统计图(画图后标注相应的数据);
(4)若该校共有2000名学生,请根据此次调查结果,估计该校参加朗诵的学生人数.
53.(2023·辽宁鞍山)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时.某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:.非凡创意;.魅力色彩;.最美设计;.无限潜力.参赛的每名学生都恰好获得其中一个奖项.活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题:
(1)本次共调查了________名学生.
(2)请补全条形统计图.
(3)本次评比活动中,全校有名学生参加,根据调查结果,请你估计在评比中获得“.非凡创意”奖的学生人数.
54.(2023·内蒙古)为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),组:,组:,组:,组:,组:,并绘制了如下不完整的统计图表.请结合统计图表,解答如下问题:
学生成绩统计表
组别 成绩 频数
20
144
45
(1)本次调查的样本容量为________,学生成绩统计表中________;
(2)所抽取学生成绩的中位数落在________组;
(3)求出扇形统计图中“”所在扇形的圆心角度数;
(4)若成绩在90分及以上为优秀,学校共有2000名学生,估计该校成绩优秀的学生有多少名?
55.(2023·内蒙古呼和浩特)3月21日是国际森林日.某中学为了推动学生探索森林文化,进行自然教育,开展了“森林——地球之肺”相关知识的测试活动.测试结束后随机抽取了部分学生成绩进行统计,按成绩分成A,,,,五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
学生成绩频数分布直方图
学生成绩扇形统计图
等级 成绩/分
A
(1)本次调查一共随机抽取了________名学生的成绩,频数分布直方图中________;补全学生成绩频数分布直方图;
(2)所抽取学生成绩的中位数落在________等级;
(3)若成绩在60分及60分以上为合格,全校共有920名学生,估计成绩合格的学生有多少名?
56.(2023·山东淄博)举世瞩目的中国共产党第二十次全国代表大会于2022年10月在北京成功召开.为弘扬党的二十大精神,某学校举办了“学习二十大,奋进新征程”的知识竞赛活动.赛后随机抽取了部分学生的成绩(满分:100分),分为,,,四组,绘制了如下不完整的统计图表:
组别 成绩(:分) 频数
20
60
学生成绩频数分布直方图
学生成绩扇形统计图
根据以上信息,解答以下问题:
(1)直接写出统计表中的________,________;
(2)学生成绩数据的中位数落在________内;在学生成绩扇形统计图中,组对应的扇形圆心角是________度;
(3)将上面的学生成绩频数分布直方图补充完整;
(4)若全校有1500名学生参加了这次竞赛,请估计成绩高于90分的学生人数.
57.(2023·海南)某中学为了了解学生最喜欢的课外活动,以便更好开展课后服务.随机抽取若干名学生进行了问卷调查.调查问卷如下:
调查问题 在下列课外活动中,你最喜欢的是( )(单选) A.文学;B.科技;C.艺术;D.体育 填完后,请将问卷交给教务处.
根据统计得到的数据,绘制成下面的两幅不完整的统计图.
请根据统计图提供的信息,解答下面的问题:
(1)本次调查采用的调查方式为 (填写“普查”或“抽样调查”);
(2)在这次调查中,抽取的学生一共有 人;扇形统计图中的值为 ;
(3)已知选择“科技”类课外活动的50名学生中有30名男生和20名女生.若从这50名学生中随机抽取1名学生座谈,且每名学生被抽到的可能性相同,则恰好抽到女生的概率是 ;
(4)若该校共有1000名学生参加课外活动,则估计选择“文学”类课外活动的学生有 人.
58.(2023·四川甘孜)某校为开设足球、篮球、排球选修课程,现对该校学生就“你最喜欢的球类运动”进行抽样调查(要求在“足球”、“篮球”、“排球”中选择一种),将调查数据绘制成如下的两幅统计图.
请根据图中的信息,解答下列问题:
(1)共调查了_________名学生,把条形统计图补充完整;
(2)求扇形统计图中“足球”对应的扇形圆心角的度数;
(3)该校共有名学生,请你估计其中最喜欢排球的学生人数.
59.(2024·江苏扬州)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:
成绩统计表
组别 成绩x(分) 百分比
A组
B组
C组 a
D组
E组
成绩条形统计图
根据所给信息,解答下列问题:
(1)本次调查的成绩统计表中________%,并补全条形统计图;
(2)这200名学生成绩的中位数会落在________组(填A、B、C、D或E);
(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.
60.(2024·江苏苏州)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:
根据以上信息,解决下列问题:
(1)将图①中的条形统计图补充完整(画图并标注相应数据);
(2)图②中项目E对应的圆心角的度数为______°;
(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.
61.(2024·湖南)某校为了解学生五月份参与家务劳动的情况,随机抽取了部分学生进行调查、家务劳动的项目主要包括:扫地、拖地、洗碗、洗衣、做饭和简单维修等.学校德育处根据调查结果制作了如下两幅不完整的统计图:
请根据以上信息,解答下列问题:
(1)本次被抽取的学生人数为 人;
(2)补全条形统计图:
(3)在扇形统计图中,“4项及以上”部分所对应扇形的圆心角度数是 ;
(4)若该校有学生1200人,请估计该校五月份参与家务劳动的项目数量达到3项及以上的学生人数.
62.(2024·天津)为了解某校八年级学生每周参加科学教育的时间(单位:),随机调查了该校八年级名学生,根据统计的结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(1)填空:的值为______,图①中的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;
(2)求统计的这组学生每周参加科学教育的时间数据的平均数;
(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是的人数约为多少?
63.(2024·湖北武汉)为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮次,投中一次计分.随机抽取名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.
测试成绩频数分布表
成绩/分 频数
根据以上信息,解答下列问题:
(1)直接写出,的值和样本的众数;
(2)若该校九年级有名学生参加测试,估计得分超过分的学生人数.
64.(2024·黑龙江齐齐哈尔)为提高学生的环保意识,某校举行了“爱护环境,人人有责”环保知识竞赛,对收集到的数据进行了整理、描述和分析.
【收集数据】随机抽取部分学生的竞赛成绩组成一个样本.
【整理数据】将学生竞赛成绩的样本数据分成四组进行整理.
(满分分,所有竞赛成绩均不低于分)如下表:
组别
成绩(/分)
人数(人)
【描述数据】根据竞赛成绩绘制了如下两幅不完整的统计图.
【分析数据】根据以上信息,解答下列问题:
(1)填空:______,______;
(2)请补全条形统计图;
(3)扇形统计图中,组对应的圆心角的度数是______;
(4)若竞赛成绩分以上(含分)为优秀,请你估计该校参加竞赛的名学生中成绩为优秀的人数.
65.(2024·吉林长春)某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取名学生对食堂进行满意度评分(满分分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:
a.高中部名学生所评分数的频数分布直方图如下图:(数据分成4组:,,,)
b.高中部名学生所评分数在这一组的是:
c.初中部、高中部各名学生所评分数的平均数、中位数如下:
平均数 中位数
初中部
高中部
根据以上信息,回答下列问题:
(1)表中的值为________;
(2)根据调查前制定的满意度等级划分标准,评分不低于分为“非常满意”.
①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为、,则________;(填“>”“<”或“=”)
②高中部共有名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.
66.(2024·内蒙古呼伦贝尔)某市某校组织本校学生参加“市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的学生只参加其中一项.为了解各项目参与情况,该校随机调查了部分参加志愿者服务的学生,将调查结果绘制成如下两幅不完整的统计图.
根据统计图信息,解答下列问题:
(1)本次调查的学生共有______人,请补全条形统计图;
(2)在扇形统计图中,求“敬老服务”对应的圆心角的度数;
(3)该校共有2000名学生,若有的学生参加志愿者服务,请你估计参加“文明宣传”项目的学生人数.
67.(2024·内蒙古通辽)为迎接2024年5月26日的科尔沁马拉松赛,某中学七年级提前开展了一次“马拉松”历史知识测试.七年级600名学生全部参加本次测试,调查研究小组随机扎取50名学生的测试成绩(百分制)作为一个样本.
【收集数据】
调查研究小组收集到50名学生的测试成绩:
60 61 62 94 73 73 85 85 87 72
63 64 70 66 74 65 67 75 76 71
94 93 84 91 76 82 83 83 92 84
80 80 82 92 91 86 77 86 88 72
70 71 93 90 81 90 74 78 81 75
【整理描述数据】
通过整理数据,得到以下尚不完整的频数分布表,频数分布直方图和扇形统计图:
组别 成绩分组 频数
16
16
(1)频数分布表中________,________,并补全频数分布直方图;
(2)扇形统计图中________,所对应的扇形的圆心角度数是________.
【应用数据】
(3)若成绩不低于90分为优秀,请你估计参加这次知识测试的七年级学生中,成绩为优秀的人数.
68.(2024·四川)某校为丰富课后服务内容,计划开设一些社团活动.受时间限制,每位学生只能参加一类社团活动.为了解学生对舞蹈、声乐、人工智能三类社团活动的喜爱情况,随机选取部分学生进行调查,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,回答下列问题:
(1)①此次调查一共随机抽取了______名学生,扇形统计图中圆心角______度;
②补全条形统计图;
(2)若该校共有400名学生喜欢这三类社团活动,请估计喜欢舞蹈社团活动的学生人数.
69.(2024·湖南长沙)中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图
类型 人数 百分比
纯电 m
混动 n
氢燃料 3
油车 5
请根据以上信息,解答下列问题:
(1)本次调查活动随机抽取了_____人;表中______,______;
(2)请补全条形统计图;
(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;
(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?
70.(2024·辽宁)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩均为不小于60的整数,分为四个等级:D:,C:,B:,A:),部分信息如下:
信息一:
信息二:学生成绩在B等级的数据(单位:分)如下:
80,81,82,83,84,84,84,86,86,86,88,89
请根据以上信息,解答下列问题:
(1)求所抽取的学生成组为C等级的人数;
(2)求所抽取的学生成绩的中位数;
(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.
71.(2024·山东潍坊)在某购物电商平台上,客户购买商家的商品后,可从“产品质量”“商家服务”“发货速度”“快递服务”等方面给予商家分值评价(分值为分、分、分、分和分).该平台上甲、乙两个商家以相同价格分别销售同款T恤衫,平台为了了解他们的客户对其“商家服务”的评价情况,从甲、乙两个商家各随机抽取了一部分“商家服务”的评价分值进行统计分析.
【数据描述】
下图是根据样本数据制作的不完整的统计图,请回答问题()().
()平台从甲、乙两个商家分别抽取了多少个评价分值?请补全条形统计图;
()求甲商家的“商家服务”评价分值的扇形统计图中圆心角的度数.
【分析与应用】
样本数据的统计量如下表,请回答问题()().
商家 统计量
中位数 众数 平均数 方差
甲商家
乙商家
()直接写出表中和的值,并求的值;
()小亮打算从甲、乙两个商家中选择“商家服务”好的一家购买此款T恤衫.你认为小亮应该选择哪一家?说明你的观点.
72.(2024·湖北)某校为增强学生身体素质,以“阳光运动,健康成长”为主题开展体育训练,并对学生进行专项体能测试,以下是某次八年级男生引体向上测试成绩的抽样与数据分析过程.
【收集数据】随机抽取若干名男生的测试成绩.
【整理数据】将抽取的成绩进行整理,用x(引体向上个数)表示成绩,分成四组:
A组,B组,C组,D组.
【描述数据】根据抽取的男生成绩,绘制出如下不完整的统计图.
【分析数据】抽取的八年级男生测试成绩的平均数为8,中位数为8,众数为11.
根据以上信息,解答下列问题:
(1)求A组人数,并补全条形统计图;
(2)估计该校八年级参加测试的400名男生中成绩不低于10个的人数;
(3)从平均数、中位数和众数这三个统计量中任选一个,解释其在本题中的意义.
73.(2024·山东济南)2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x表示,单位:分)
并对数据(成绩)进行统计整理.数据分为五组:
A:;B:;C:;D:;E:.
下面给出了部分信息:
a:C组的数据:
70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.
b:不完整的学生竞赛成绩频数直方图和扇形统计图如下:
请根据以上信息完成下列问题:
(1)求随机抽取的八年级学生人数;
(2)扇形统计图中B组对应扇形的圆心角为______度;
(3)请补全频数直方图;
(4)抽取的八年级学生竞赛成绩的中位数是______分;
(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.
74.(2024·内蒙古)近年来,近视的青少年越来越多且年龄越来越小·研究表明:这与学生长期不正确的阅读、书写姿势和长时间使用电子产品等有很大的关系,呼和浩特市某校为了解儿年级学生右眼视力的情况,计划采用抽样调查的方式来估计该校九年级840名学生的右眼视力情况.制定以下两种抽样方案:
①从九年级的一个班级中随机抽取42名学生(九年级每个班级至少有50名学生);
②从九年级中随机抽取42名学生.
你认为更合理的方案是_________(填“①”或“②”)
该校用合理的方案抽取了42名学生进行右眼视力检查,检查结果如下:
4.5 4.8 4.9 4.4 4.5 4.2 5.0
4.0 4.2 4.3 5.0 4.2 4.4 4.9
4.2 4.4 4.5 4.6 4.8 4.9 4.1
5.0 4.9 4.8 4.7 4.5 4.8 5.0
4.9 4.5 4.3 4.9 4.3 5.0 4.9
4.8 4.9 5.0 4.1 4.9 4.3 4.2
整理上面的数据得到如下表格:
右眼视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
人数 1 2 5 4 3 m 1 1 5 n 6
请根据所给信息,解答下列问题:
(1)_________,_________;
(2)计算该样本的平均数;(结果精确到0.1,参考数据:)
(3)若该校九年级小明同学右眼视力为4.5,请你用调查得到的数据中位数推测他在九年级全体学生中的右眼视力状况;
(4)根据样本数据,估计该校九年级学生右眼视力在4.7及4.7以上的学生人数.
75.(2024·江苏南通)我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.
50个家庭去年月均用水量频数分布表
组别 家庭月均用水量(单位:吨) 频数
A 7
B m
C n
D 6
E 2
合计 50
根据上述信息,解答下列问题:
(1)______,______;
(2)这50个家庭去年月均用水量的中位数落在______组;
(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?
76.(2024·山东青岛)某校准备开展“行走的课堂,生动的教育”研学活动,并计划从博物馆、动物园、植物园、海洋馆(依次用字母A,B,C,D表示)中选择一处作为研学地点.为了解学生的选择意向,学校随机抽取部分学生进行调查,整理绘制了如下不完整的条形统计图和扇形统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;扇形统计图中A所对应的圆心角的度数为______°;
(2)该校共有1600名学生,请你估计该校有多少名学生想去海洋馆;
(3)根据以上数据,学校最终将海洋馆作为研学地点,研学后,学校从八年级各班分别随机抽取10名学生开展海洋知识竞赛.甲班10名学生的成绩(单位:分)分别是:75,80,80,82,83,85,90,90,90,95;乙班10名学生的成绩.(单位:分)的平均数、中位数、众数分别是:84,83,88.根据以上数据判断______班的竞赛成绩更好.(填“甲”或“乙”)
77.(2024·江苏徐州)参加初中学业水平考试的人数简称“中考人数”.如图,某市根据2016﹣2024年中考人数及2024年上半年小学、初中各年级在校学生人数,绘制出2016﹣2032年中考人数(含预估)统计图如图:
根据以上信息,解决下列问题.
(1)下列结论中,所有正确结论的序号是______.
①2016﹣2031年中考人数呈现先升后降的趋势;
②与上一年相比,中考人数增加最多的年份是2021年;
③2016﹣2024年中考人数的波动比2024﹣2032年中考人数的波动大.
(2)为促进人口长期均衡发展,有效提高人口出生率,我国于2013﹣2021年先后实施了三项鼓励生育的政策,其中导致该市2032年中考人数较2031年增加的最主要原因是______.
A.2013年单独两孩政策
B.2015年全面两孩政策
C.2021年三孩生育政策
(3)2024年上半年,该市小学在校学生共有多少人?
78.(2024·山东德州)某校随机调查了本学期部分学生读课外书的册数情况,整理得到如下不完整的统计表和扇形图.
册数 四册 五册 六册 七册
人数 6 a 9 7
(1)本次调查的学生人数为________;
(2) ________;
(3)已知该校共有1800名学生,请估计全校本学期读四册课外书的学生人数________;
(4)学校随后又补查了另外几人读课外书的册数情况,发现这几人读课外书的册数恰好相同.将其与之前的数据合并后,发现册数的众数变成了另外一个数,则补查的人数最少为________.
参考答案与详解
一、选择题
1.(2024·贵州)为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )
A.100人 B.120人 C.150人 D.160人
【答案】D
【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.
【详解】解:(人),
故选D.
2.(2024·广东广州)为了解公园用地面积(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )
A.的值为20
B.用地面积在这一组的公园个数最多
C.用地面积在这一组的公园个数最少
D.这50个公园中有一半以上的公园用地面积超过12公顷
【答案】B
【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.
【详解】解:由题意可得:,故A不符合题意;
用地面积在这一组的公园个数有16个,数量最多,故B符合题意;
用地面积在这一组的公园个数最少,故C不符合题意;
这50个公园中有20个公园用地面积超过12公顷,不到一半,故D不符合题意;
故选B
3.(2023·浙江湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是( )
A.25立方米 B.30立方米 C.32立方米 D.35立方米
【答案】B
【分析】根据平均数的计算公式将上面的值代入进行计算即可.
【详解】解:平均每天的用水量是立方米,
故选B.
4.(2024·内蒙古赤峰)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )
视力 4.7以下 4.7 4.8 4.9 4.9以上
人数 39 41 33 40 47
A.120 B.200 C.6960 D.9600
【答案】D
【分析】本题考查的是统计表,用样本估计总体,求出不低于4.8的人数所占的百分比是解决此题的关键.求出不低于4.8的人数所占的百分比再乘16000即可求出结论.
【详解】解:,
∴视力不低于4.8的人数是9600,
故选:D.
5.(2024·内蒙古赤峰)在数据收集、整理、描述的过程中,下列说法错误的是( )
A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50
B.了解某校一个班级学生的身高情况,适合全面调查
C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性
D.甲、乙二人10次测试的平均分都是96分,且方差,,则发挥稳定的是甲
【答案】D
【分析】本题考查了全面调查与抽样调查、判断事件发生的可能性、根据方差判断稳定性,根据全面调查与抽样调查的定义、方差的意义逐项判断即可得出答案.
【详解】解:A、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;
B、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;
C、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;
D、甲、乙二人10次测试的平均分都是96分,且方差,,则发挥稳定的是乙,故原说法错误,符合题意;
故选:D.
6.(2024·内蒙古呼伦贝尔)下列说法正确的是( )
A.任意画一个三角形,其内角和是是必然事件
B.调查某批次汽车的抗撞击能力,适宜全面调查.
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐
【答案】D
【分析】本题考查了必然事件,方差的意义,抽样调查与普查,中位数,根据必然事件,中位数,方差的意义,抽样调查与普查逐项分析判断即可.
【详解】A.任意画一个三角形,其内角和是是不可能事件,故原说法错误;
B.调查某批次汽车的抗撞击能力,适宜抽样调查.故原说法错误;
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是5,故原说法错误
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐,故正确,
故选:D.
7.(2024·山东济宁)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )
A.班主任采用的是抽样调查 B.喜爱动画节目的同学最多
C.喜爱戏曲节目的同学有6名 D.“体育”对应扇形的圆心角为
【答案】D
【分析】根据全班共50名学生,班主任制作了50份问卷调查,可知班主任采用的是普查,由此可判断A;根据喜爱娱乐节目的同学所占的百分比最多,可判断B;用50乘以喜爱戏曲节目的同学所占的百分比计算出喜爱戏曲节目的同学的人数,可判断C;用乘以“体育”所占的百分比求出“体育”对应扇形的圆心角的度数,即可判断D.
本题考查了扇形统计图,从扇形统计图中正确获取信息是解题关键.
【详解】全班共50名学生,班主任制作了50份问卷调查,
所以班主任采用的是全面调查,
故A选项错误;
喜爱娱乐节目的同学所占的百分比最多,因此喜爱娱乐节目的同学最多,
故B选项错误;
喜爱戏曲节目的同学有名,
故C选项错误;
“体育”对应扇形的圆心角为,
故D选项正确.
故选:D.
8.(2024·内蒙古)为了解某小区居民的家庭月平均用水量的情况,物业公司从该小区1500户家庭中随机抽取150户家庭进行调查,统计了他们的月平均用水量,将收集的数据整理成如下的统计图表:
月平均用水量x(吨) 频数
15
a
32
40
33
总计 150
根据统计图表得出以下四个结论,其中正确的是( )
A.本次调查的样本容量是1500
B.这150户家庭中月平均用水量为的家庭所占比例是
C.在扇形统计图中,月平均用水量为的家庭所对应圆心角的度数是
D.若以各组组中值(各小组的两个端点的数的平均数)代表各组的实际数据,则这150户家庭月平均用水量的众数是12
【答案】D
【分析】本题主要考查统计的应用,熟练掌握利用统计图表进行数据分析的方法是解决问题的关键.根据统计图表中的数据对选项中的每个结论进行判断即可找出正确答案.
【详解】解:本次调查的样本容量是150,故A不正确;
,故B不正确;
96°,故C不正确;
以各组组中值(各小组的两个端点的数的平均数)代表各组的实际数据,组的实际数据为12,这组的数量最多为40户,所以12是这组数据的众数,即这150户家庭月平均用水量的众数是12,故D正确.
故选:D.
9.(2023·内蒙古赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑,某校对全校名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是( )
A.样本容量是 B.样本中C等级所占百分比是
C.D等级所在扇形的圆心角为 D.估计全校学生A等级大约有人
【答案】C
【分析】用B等的人数除以B等的百分比即可得到样本容量,用C等级人数除以总人数计算样本中C等级所占百分比,用乘以D等级的百分比即可计算D等级所在扇形的圆心角,用全校学生数乘以A等级的百分比即可得到全校学生A等级人数,即可分别判断各选项.
【详解】解:A.∵,即样本容量为200,故选项正确,不符合题意;
B.样本中C等级所占百分比是,故选项正确,不符合题意;
C.样本中C等级所占百分比是,D等级所在扇形的圆心角为,故选项错误,符合题意;
D.估计全校学生A等级大约有(人),故选项正确,不符合题意.
故选:C.
10.(2023·四川雅安)某位运动员在一次射击训练中,次射击的成绩如图,则这10次成绩的平均数和中位数分别是( )
A., B., C., D.,
【答案】B
【分析】根据折线图将成绩从小到大依次排列,然后求中位数与平均数即可.
【详解】解:由图可知,次的成绩由小到大依次排列为、、、、、、、、、,
∴10次成绩的中位数为,
平均数为,故B正确.
故选:B.
11.(2023·辽宁沈阳)下列说法正确的是( )
A.将油滴入水中,油会浮在水面上是不可能事件
B.抛出的篮球会下落是随机事件
C.了解一批圆珠笔芯的使用寿命,采用普查的方式
D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定
【答案】D
【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.
【详解】解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;
B、抛出的篮球会下落是必然事件,故B不符合题意;
C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;
D、若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;
故选:.
12.(2023·海南)水是生命之源.为了倡导节约用水,随机抽取某小区7户家庭上个月家里的用水量情况(单位:吨),数据为:7,5,6,8,9,9,10.这组数据的中位数和众数分别是( )
A.9,8 B.9,9 C.8.5,9 D.8,9
【答案】D
【分析】根据中位数和众数的定义进行解答即可.
【详解】解:7,5,6,8,9,9,10中9出现次数最多,因此众数为9;
从小到大进行排序为5,6,7,8,9,9,10,中间位置的数为8,因此中位线是8.
故选:D.
13.(2024·江苏镇江)下列各项调查适合普查的是( )
A.长江中现有鱼的种类 B.某班每位同学视力情况
C.某市家庭年收支情况 D.某品牌灯泡使用寿命
【答案】B
【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.再根据问卷调查方法即可求解.
【详解】解:A、长江中现有鱼的种类,适合抽样调查,不符合题意;
B、某班每位同学视力情况,适合普查,符合题意;
C、某市家庭年收支情况,适合抽样调查,不符合题意;
D、某品牌灯泡使用寿命,适合抽样调查,不符合题意;
故选:B.
14.(2023·青海西宁)下列说法正确的是( )
A.检测“神州十六号”载人飞船零件的质量,应采用抽样调查
B.任意画一个三角形,其外角和是是必然事件
C.数据4,9,5,7的中位数是6
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
【答案】C
【分析】根据普查和抽样调查、事件的分类、中位数、方差的意义分别进行判断即可
【详解】解:A.检测“神州十六号”载人飞船零件的质量,应采用普查,故选项错误,不符合题意;
B.任意画一个三角形,其外角和是是不可能事件,故选项错误,不符合题意;
C.数据4,9,5,7的中位数是,故选项准确,符合题意;
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据更不稳定,故选项错误,不符合题意.
故选:C.
15.(2023·辽宁丹东)某校拟派一名跳高运动员参加一项校际比赛,对4名跳高运动员进行了多次选拔比赛,他们比赛成绩的平均数和方差如下表:
甲 乙 丙 丁
平均数 169 168 169 168
方差 6.0 17.3 5.0 19.5
根据表中数据,要从中选择一名平均成绩好,且发挥稳定的运动员参加比赛,最合适的人选是( )
A.甲 B.乙 C.丙 D.丁
【答案】C
【分析】根据平均数与方差的意义解答即可.
【详解】解: 由平均数可知,,
甲与丙二选一,
又由方差可知,,
选择丙.
故选:C
16.(2024·江苏无锡)一组数据:31,32,35,37,35,这组数据的平均数和中位数分别是( )
A.34,34 B.35,35 C.34,35 D.35,34
【答案】C
【分析】本题主要考查了平均数与中位数的定义,根据平均数与中位数的定义求解即可.
【详解】解:这组数据的平均数是:,
这组数据从小大到大排序为:31,32,35,35,37,
∵一共有5个数据,
∴中位数为第3位数,即35,
故选:C.
17.(2024·江苏徐州)铜桐收藏有枚南宋铁钱“庆元通宝”(如图所示),测得它们的质量(单位:)分别为、、、、、、.这组数据的中位数为( )
A. B. C. D.
【答案】B
【分析】本题考查了中位数,解题的关键是根据数据有奇数个,则正中间的数字即为所求.将数据从小到大重新排列,再根据中位数的概念求解即可.
【详解】解:将这组数据重新排列得:,,,,,,,
∵数据有奇数个,最中间的数据为:,
∴这组数据的中位数为.
故选:B.
18.(2024·山东日照)某班40名同学一周参加体育锻炼的时间统计图如图所示,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A., B., C., D.,
【答案】A
【分析】本题考查了众数、中位数,根据众数和中位数的定义即可得出答案,熟练掌握众数和中位数的定义是解此题的关键.
【详解】解:由统计图可知,该班40名同学一周参加体育锻炼时间出现次数最多的是小时,故众数是9,
处在第、位的是,故中位数是,
故选:A.
19.(2024·山东德州)甲、乙、丙三名射击运动员分别进行了5次射击训练,成绩(单位:环)如下表所示:
甲
乙
丙
则三名运动员中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.无法确定
【答案】A
【分析】本题考查通过方差判断数据的稳定性,计算3名运动员测试成绩的方差,根据“方差越小,数据的波动越小,方差越大,数据的波动越大”即可解答.
【详解】解:甲的平均数为
方差;
乙的平均数为
方差;
丙的平均数为
方差;
∴
∴甲的成绩最稳定.
故选:A.
20.(2024·山东淄博)数学兴趣小组成员小刚对自己的学习质量进行了测试.如图是他最近五次测试成绩(满分为100分)的折线统计图,那么其平均数和方差分别是( )
A.95分, B.96分, C.95分,10 D.96分,10
【答案】D
【分析】本题考查折线图,求平均数和方差,根据平均数和方差的计算方法,进行计算即可.
【详解】解:平均数为:(分);
方差为:;
故选D.
21.(2023·四川甘孜)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.
成绩/米
人数 2 3 5 4 1
这些运动员成绩的众数和中位数分别为( )
A.米,米 B.米,米
C.米,米 D.米,米
【答案】A
【分析】根据众数的中位数的定义分别进行解答即可.
【详解】解:观察表中可知,出现了5次,次数最多,
运动员的成绩的众数为:米.
将表中的数据按照从小到大的顺序排列如下:
,,,,,,,,,,,,,,
运动员的成绩的中位数是米.
故选:A.
22.(2024·四川雅安)某校开展了红色经典故事演讲比赛,其中8名同学的成绩(单位:分)分别为:85,81,82,86,82,83,92,89.关于这组数据,下列说法中正确的是( )
A.众数是92 B.中位数是
C.平均数是84 D.方差是13
【答案】D
【分析】此题考查了方差,算术平均数,中位数,以及众数,熟练掌握各自的计算方法是解本题的关键.
找出这组数据中出现次数最多的即为众数,这组数据排列后找出最中间的两个数求出平均数即为中位数,求出这组数据的平均数,利用方差公式求出方差,判断即可.
【详解】解:排列得:,
出现次数最多是82,即众数为82;
最中间的两个数为83和85,即中位数为84;
,即平均数为85;
,即方差为13.
故选:D.
二、填空题
23.(2023·广东广州)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a的值为 .若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为 .
【答案】 30 /36度
【分析】用总件数100减去其他奖品的数量即可得到a的值,利用“一等奖”与作品总数的比乘以即可得到“一等奖”对应扇形的圆心角度数.
【详解】解:,
“一等奖”对应扇形的圆心角度数为,
故答案为:30,.
24.(2024·西藏)甲、乙、丙三名学生参加仰卧起坐体育项目测试,他们一周测试成绩的平均数相同,方差如下:,,.则甲、乙、丙中成绩最稳定的学生是 .
【答案】丙
【分析】本题考查方差,掌握方差越小越稳定是解题的关键.
先比较甲、乙、丙的方差的大小,再找出方差最小的学生即可.
【详解】解:∵,,.
∴,
∴成绩最稳定的学生是丙,
故答案为:丙.
25.(2024·广西)八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有 种.
【答案】
【分析】本题考查了扇形统计图,用乘以藤本类的百分比即可求解,看懂统计图是解题的关键.
【详解】解:由扇形统计图可得,藤本类有种,
故答案为:.
26.(2023·山东青岛)小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,.这六个分数的极差是 分.
【答案】3
【分析】根据极差的定义:一组数据中最大数与最小数的差叫数据的极差直接判断即可得到答案;
【详解】解:由数据得,
极差为:,
故答案为:3.
27.(2023·江苏淮安)将甲、乙两组各10个数据绘制成折线统计图(如图),两组数据的平均数都是7,设甲、乙两组数据的方差分别为,则 (填“”“”或“”).
【答案】
【分析】根据折线统计图可得甲的数据波动较小,进而根据方差的意义即可求解.
【详解】解:由折线统计图可得,甲的数据波动较小,则 ,
故答案为:.
28.(2023·辽宁丹东)某青年排球队有12名队员,年龄的情况如下表:
年龄/岁 18 19 20 21 22
人数 3 5 2 1 1
则这12名队员年龄的中位数是 岁.
【答案】19
【分析】根据中位数的定义,求出第6名队员和第7名队员年龄的平均数即可.
【详解】解:∵,
∴第6名队员和第7名队员年龄均为19岁,
∴这12名队员年龄的中位数是19岁,
故答案为:19.
29.(2024·山东东营)4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是 小时.
时间(小时) 0.5 1 1.5 2 2.5
人数(人) 10 18 12 6 4
【答案】1
【分析】本题考查了众数:一组数据中出现次数最多的数据叫做众数.直接根据众数的定义求解.
【详解】解:由统计表可知,每天阅读1小时的人数最多,为18人,
所以学生每天的平均阅读时间的众数是1小时.
故答案为:1.
30.(2024·江苏镇江)小丽6次射击的成绩如图所示,则她的射击成绩的中位数为 环.
【答案】7.5
【分析】本题考查的是折线统计图和中位数,熟练掌握中位数的定义和计算方法是关键.根据中位数的定义即可得出答案.
【详解】解:射击成绩从小到大重新排列为:4,5,7,8,9,10,
中位数为.
故答案为:7.5
31.(2024·江苏镇江)一组数据:1、1、1、2、5、6,它们的众数为 .
【答案】1
【分析】本题考查众数,关键是掌握众数的定义.一组数据中出现次数最多的数据叫做众数,延长即可得到答案.
【详解】解:数据:1、1、1、2、5、6的众数为1.
故答案为:1
32.(2024·北京)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g),得到的数据如下:
50.03 49.98 50.00 49.99 50.02
49.99 50.01 49.97 50.00 50.02
当一个工件的质量(单位:g)满足时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是 .
【答案】160
【分析】本题考查了用样本估计总体,熟练掌握知识点是解题的关键.
先计算出10个工件中为一等品的频率,再乘以总数200即可求解.
【详解】解:10个工件中为一等品的有49.98,50.00,49.99,50.02,49.99,50.01,50.00,50.02这8个,
∴这200个工件中一等品的个数为个,
故答案为:160.
33.(2024·甘肃兰州)甲,乙两人在相同条件下各射击10次,两人的成绩(单位:环)如图所示,现有以下三个推断:
①甲的成绩更稳定;
②乙的平均成绩更高;
③每人再射击一次,乙的成绩一定比甲高.其中正确的是 .(填序号)
【答案】①②/②①
【分析】本题考查了平均数、方差的意义.解答本题的关键是掌握它们的定义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差、平均数的意义进行判断即可求出答案.
【详解】解:根据图象可知甲的波动比乙小,则甲的成绩更加稳定,故①正确;根据图象可知甲的平均成绩稳定在5以下,而乙的平均成绩稳定在7.5左右,则乙的平均成绩更高,故②正确;如果每人再射击一次,但乙的成绩不一定比甲高,只能是可能性较大,因为乙的平均成绩更高,但是波动较大,故③错误.
故答案为:①②.
34.(2024·山东青岛)图①和图②中的两组数据,分别是甲、乙两地年月日至日每天的最高气温,设这两组数据的方差分别为,,则 .(填“”,“”,“”)
【答案】
【分析】本题考查了折线统计图和方差,根据折线统计图和方差的意义进行求解即可,掌握方差的意义是解题的关键.
【详解】解:由图象可知,甲地的气温波动小,比较稳定,乙地的气温波动大,更不稳定,
∴,
故答案为:.
三、解答题
35.(2023·内蒙古)在推进碳达峰、碳中和进程中,我国新能源汽车产销两旺,连续8年保持全球第一.图为我国某自主品牌车企2022年下半年新能源汽车的月销量统计图.
请根据所给信息,解答下列问题:
(1)通过计算判断该车企2022年下半年的月均销量是否超过20万辆;
(2)通过分析数据说明该车企2022年下半年月销量的特点(写出一条即可),并提出一条增加月销量的合理化建议.
【答案】(1)该车企2022年下半年的月均销量超过20万辆
(2)2022年下半年月销量的特点:月销量呈递增趋势;12月的销量最大;有三个月的销量超过了20万辆;中位数为20.5万辆;月均销量超过20万辆等
建议:充分了解客户需求,及时处理客户反馈,提供优质的售后服务
【分析】(1)根据平均数的定义求解即可;
(2)利用条形统计图中的数据进行阐述即可.
【详解】(1)解:(万辆),
,
∴该车企2022年下半年的月均销量超过20万辆.
(2)2022年下半年月销量的特点:月销量呈递增趋势;12月的销量最大;有三个月的销量超过了20万辆;中位数为20.5万辆;月均销量超过20万辆等.
建议:充分了解客户需求,及时处理客户反馈,提供优质的售后服务.
36.(2023·宁夏)学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩(单位:分)进行统计:
七年级 86 94 79 84 71 90 76 83 90 87
八年级 88 76 90 78 87 93 75 87 87 79
整理如下:
年级 平均数 中位数 众数 方差
七年级 84 90
八年级 84 87
根据以上信息,回答下列问题:
(1)填空:_______,________.
同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;
(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;
(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.
【答案】(1)85,87,七;
(2)220
(3)八年级,理由见解析
【分析】(1)根据中位数和众数的定义即可求出答案;
(2)分别求出七、八年级优秀的比例,再乘以总人数即可;
(3)两组数据的平均数相同,通过方差的大小直接比较即可.
【详解】(1)解:把七年级10名学生的测试成绩排好顺序为:71,76,79,83,84,86,87,90,90,94,
根据中位数的定义可知,该组数据的中位数为,
八年级10名学生的成绩中87分的最多有3人,所以众数,
A同学得了86分大于85分,位于年级中等偏上水平,由此可判断他是七年级的学生;
故答案为:85,87,七;
(2)(人),
答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;
(3)我认为八年级的学生掌握国家安全知识的总体水平较好,
理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.
37.(2023·黑龙江哈尔滨)军乐中学开展以“我最喜欢的劳动实践课”为主题的调查活动,围绕“在园艺课,泥塑课,编织课、烹饪课四门劳动实践课中,你最喜欢哪一门课?(必选且只选一门)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢泥塑课的学生人数占所调查人数的.
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若军乐中学共有1200名学生,请你估计该中学最喜欢烹任课的学生共有多少名.
【答案】(1)
(2)见解析
(3)
【分析】根据最喜欢泥塑课的学生人数为人,占所调查人数的,用即可求解;
(2)根据总人数减去其他类型的人数,即可得出最喜欢编织课的学生人数进而补全统计图;
(3)根据最喜欢烹任课的学生的占比乘以,即可求解.
【详解】(1)解:最喜欢泥塑课的学生人数为人,占所调查人数的,
∴这次调查中,一共抽取了名学生
(2)解:最喜欢编织课的学生人数为人,
补全统计图如图所示,
(3)解:估计该中学最喜欢烹任课的学生共有名
38.(2023·辽宁阜新)端午节是中华民族的传统节日,节日里吃粽子是传统习俗.为了了解附近居民对A(肉粽子),B(蛋黄粽子).C(红枣粽子),D(葡萄干粽子)四种口味粽子的喜爱情况,某商场随机抽取了某小区的部分居民进行问卷调查(每人只能选一种口味),并将调查结果绘制成如下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)参加此次问卷调查的居民共有______人.
(2)通过计算将条形统计图补充完整.
(3)若该小区共有2000名居民,请估计喜爱A(肉粽子)的居民约有多少人.
【答案】(1)50
(2)见解析
(3)400
【分析】(1)用喜爱红枣粽子的人数除以其所占百分比,即可求解;
(2)用总人数分别减去A、C、D的人数,即可求出B的人数;
(3)先计算喜爱A(肉粽子)的人数所占百分比,再用小区总人数乘以喜爱A(肉粽子)的人数所占百分比即可求解.
【详解】(1)解:(人),
故答案为:50;
(2)解:喜爱蛋黄粽子人数:(人),
补全条形统计图如图所示:
(3)解:(人),
答:喜爱A(肉粽子)的居民约有400人.
39.(2023·浙江湖州)4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的类,将抽查结果绘制成如下统计图(不完整).
被抽查学生最喜欢的书籍种类的 条形统计图 被抽查学生最喜欢的书籍种类的 扇形统计图
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并求出扇形统计图中m的值.
(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.
【答案】(1)200人,40
(2)见解析
(3)360人
【分析】(1)根据其它类的人数和所占的百分比求出调查的总人数,用科技类的人数比上总人数,即可得出科技类的学生人数占抽样人数的百分比;
(2)用总人数减去文学类、科技类和其他的人数,求出艺术类的人数,补条形统计图即可;
(3)用1200乘以文学类书籍所占的百分比,即可得出答案.
【详解】(1)被抽查的学生人数是(人)
∵,
∴扇形统计图中m的值是40.
(2)∵(人),
∴补全的条形统计图如图所示
(3)∵(人),
∴估计全校最喜欢“文学类”书籍的学生人数共有360人.
40.(2024·广西)某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:
进球数 0 1 2 3 4 5
人数 1 8 6 3 1 1
(1)求被抽取的20名女同学进球数的众数、中位数、平均数;
(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.
【答案】(1)众数为1、中位数为2、平均数为
(2)估计为“优秀”等级的女生约为50人
【分析】(1)根据平均数、中位数、众数的定义求解即可;
(2)算出样本的优秀率,再估计总体的优秀人数.
【详解】(1)解:女生进球数的平均数为(个),
女生进球数的中位数是第10个和第11个成绩的平均数,即(个),
女生进球个数为1个的人最多,故众数是1个;
(2)解:(人),
答:估计为“优秀”等级的女生约为50人.
41.(2024·浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
科学活动喜爱项目调查问卷 以下问题均为单选题,请根据实际情况填写. 问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是( ) (A)科普讲座 (B)科幻电影 (C)AI应用 (D)科学魔术 如果问题1选择C.请继续回答问题2. 问题2:你更关注的应用是( ) (E)辅助学习 (F)虚拟体验 (G)智能生活 (H)其他
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“应用”的学生中更关注“辅助学习”有多少人?
(2)学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
【答案】(1)32
(2)324
【分析】本题考查的是从条形图与扇形图中获取信息,利用样本估计总体,从图中获取相关联的信息是解本题的关键.
(1)用本次调查中最喜爱“AI应用”的学生人数乘以更关注“辅助学习”的人数所占的百分比即可求解;
(2)用1200乘以样本中该校最喜爱“科普讲座”的学生人数所占的百分比即可求解.
【详解】(1)(人)
∴本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;
(2)(人)
∴估计该校最喜爱“科普讲座”的学生人数有324人.
42.(2024·黑龙江大兴安岭地)为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:
组别 分组(cm) 频数
A 3
B m
C 20
D 14
E 5
(1)频数分布表中 ,扇形统计图中 .
(2)本次调查立定跳远成绩的中位数落在 组别.
(3)该校有600名男生,若立定跳远成绩大于200cm为合格,请估计该校立定跳远成绩合格的男生有多少人?
【答案】(1)8,40
(2)C
(3)估计该校立定跳远成绩合格的男生有228人
【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,
(1)用A组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B组的人数,用C组的人数除以总人数即可求解;
(2)根据中位数的求法,即可求解;
(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.
【详解】(1)解:被抽取的学生数为:(人)
故(人),
,即,
故答案为:,;
(2)解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,
,,
把这组数据从小到大排列,第25和第26个数据都在C组,
故本次调查立定跳远成绩的中位数落在C组,
答案为:C;
(3)解:(人)
答:该校立定跳远成绩合格的男生有人.
43.(2024·黑龙江牡丹江)某校为掌握学生对垃圾分类的了解情况,在全校范围内抽取部分学生进行调查问卷,并将收集到的信息进行整理,绘制成如图所示不完整的统计图,其中A为“非常了解”,B为“了解较多”,C为“基本了解”,D为“了解较少”.请你根据图中提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生;
(2)补全条形统计图,并求出扇形统计图中“了解较少”所对应的圆心角度数;
(3)若全校共有1200名学生,请估计全校有多少名学生“非常了解”垃圾分类问题.
【答案】(1)50
(2),图形见详解
(3)480名
【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(1)用A、C、D的总人数除以所占比例即可求解;
(2)先用“了解较少”的占比,用总人数减去A、C、D的人数即可得B的人数,据此即可补全条形统计图;
(3)用样本估算总体即可.
【详解】(1)解:这次被调查的学生人数为:(名);
(2)“了解较少”所对应的圆心角度数为:,
(人)
补全图形如下:
(3)(名),
估计全校有多少名学生“非常了解”垃圾分类问题有480名.
44.(2024·甘肃兰州)为落实“双减”政策,培养德智体美劳全面发展的时代新人,某校组织调研学生体育和美育发展水平,现从七年级共180名学生中随机抽取20名学生,对每位学生的体育和美育水平进行测评后按百分制分数量化,并进行等级评定(成绩用x表示,分为四个等级,包括优秀:;良好:;合格:;待提高:).对数据进行整理,描述和分析,部分信息如下.
信息一:体育成绩的人数(频数)分布图如下.
信息二:美育成绩的人数(频数)分布表如下.
分组
人数 m 7 2 7
信息三:20位学生的体育成绩和美育成绩得分统计如下(共20个点).
根据以上信息,回答下列问题:
(1)填空:______;
(2)下列结论正确的是______;(填序号)
①体育成绩低于80分的人数占抽取人数的;
②参与测评的20名学生美育成绩的中位数对应的等级是“合格”;
③在信息三中,相比于点A所代表的学生,点B所代表的学生的体育水平与其大致相同,但美育水平还存在一定差距,需要进一步提升;
(3)请结合以上信息,估计七年级全体学生中体育和美育两项成绩均属于“优秀”等级的人数.
【答案】(1)4
(2)①③
(3)18
【分析】本题主要考查了条形统计图的相关知识,个体占比,中位数定义,用样本估计总体等知识,掌握这些知识是解题的关键.
(1)用样本总体减去良好成绩的人生,合格成绩的人数,待提高成绩的人数即可得出答案.
(2)①用体育成绩低于80分的人数8除以样本总体20即可得出判断.②用中位数的定义判断即可.③根据坐标得出点A和点B各自的美育和体育的成绩判断即可.
(3)用样本估计总体即可.
【详解】(1)解:,
故答案为:4.
(2)①根据20位学生的体育成绩和美育成绩得分统计图可知:
体育成绩低于80分的人数有8人,
∴体育成绩低于80分的人数有占抽取人数的,故①正确.
②∵一共有20人,成绩从小到大排序,中位数为第10位和第11位的平均数,
∴中位数位于之间,
即参与测评的20名学生美育成绩的中位数对应的等级是“良好”,故②错误.
③在信息三中,点A的美育成绩为90,体育成绩为70,点B的美育成绩为70,体育成绩为70,所以相比于点A所代表的学生,点B所代表的学生的体育水平与其大致相同,但美育水平还存在一定差距,需要进一步提升,故③正确,
故有①③正确,
故答案为①③.
(3)根据信息三,可知:美育和体育成绩都在90分以及以上的只有2人.
故七年级全体学生中体育和美育两项成绩均属于“优秀”等级的人数有人.
45.(2024·江苏常州)某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:
完全充放电次数t
充电宝数量/个 2 3 10 5
(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;
(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);
①这20个充电宝的完全充放电次数都不低于300次;
②这20个充电宝的完全充放电次数t的中位数满足;
③这20个充电宝的完全充放电次数t的平均数满足.
(3)估计这批充电宝中完全充放电次数在600次及以上的数量.
【答案】(1)见解析
(2)①②
(3)500个
【分析】本题考查调查方式,求中位数,众数,利用样本估计总体:
(1)根据调查方式的选择,进行说明即可;
(2)根据统计表的数据,中位数和平均数的计算方法,逐一进行判断即可;
(3)利用样本估计总体的思想进行求解即可.
【详解】(1)解:对充电宝的使用寿命进行调查,对充电宝具有破坏性,故不能采用普查的方式.
(2)解:由统计表可知:这20个充电宝的完全充放电次数都不低于300次;故①正确;
将数据排序后,第10个和第11个数据均位于,故这20个充电宝的完全充放电次数t的中位数满足;故②正确;
由统计表的中的数据可知,的数据只有2个,故平均数一定大于400,故③错误;
故答案为:①②;
(3)解:(个).
46.(2024·江苏宿迁)某校为丰富学生的课余生活,开展了多姿多彩的体育活动,开设了五种球类运动项目:A篮球,B足球,C排球,D羽毛球,E乒乓球.为了解学生最喜欢以上哪种球类运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并绘制了统计图:
某同学不小心将图中部分数据丢失,请结合统计图,完成下列问题:
(1)本次调查的样本容量是________,扇形统计图中C对应圆心角的度数为________
(2)请补全条形统计图;
(3)若该校共有2000名学生,请你估计该校最喜欢“E乒乓球”的学生人数.
【答案】(1)200;36
(2)见解析
(3)460人
【分析】本题主要考查了条形统计图和扇形统计图,样本估计总体:
(1)用最喜欢“D羽毛球”的学生人数除以其所占的百分比,可得样本容量,再用360度乘以最喜欢“B足球”的学生人数所占的百分比,即可求解;
(2)求出最喜欢“B足球”的学生人数,即可求解;
(3)用2000乘以最喜欢“E乒乓球”的学生人数所占的百分比,即可求解.
【详解】(1)解:本次调查的样本容量是;
扇形统计图中C对应圆心角的度数为;
故答案为:200;36
(2)解:最喜欢“B足球”的学生人数为人,
补全条形统计图,如图:
(3)解:人,
即该校最喜欢“E乒乓球”的学生人数为460人.
47.(2024·黑龙江大庆)根据教育部制定的《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织学生参加了国防知识竞赛,将学生的百分制成绩(x分)用5级记分法呈现:“”记为1分,“”记为2分,“”记为3分,“”记为4分,“”记为5分.现随机将全校学生以20人为一组进行分组,并从中随机抽取了3个小组的学生成绩进行整理,绘制统计图表,部分信息如下:
平均数 中位数 众数
第1小组 3.9 4 a
第2小组 b 3.5 5
第3小组 3.25 c 3
请根据以上信息,完成下列问题:
(1)①第2小组得分扇形统计图中,“得分为1分”这一项所对应的圆心角为______度;
②请补全第1小组得分条形统计图;
(2)______,______,______;
(3)已知该校共有4200名学生,以这3个小组的学生成绩作为样本,请你估计该校有多少名学生竞赛成绩不低于90分?
【答案】(1)①18;②
(2)5;;3
(3)估计该校约有名学生竞赛成绩不低于90分.
【分析】(1)①用乘以第2小组“得分为1分”这一项的占比即可求解;②求得第1小组“得分为4分”这一项的人数即可补全第1小组得分条形统计图;
(2)根据众数、平均数和中位数的定义即可求解;
(3)利用样本估计总体即可求解.
【详解】(1)解:①第2小组得分扇形统计图中,“得分为1分”这一项所对应的圆心角为
,
故答案为:18;
②第1小组“得分为4分”这一项的人数为(人),
补全第1小组得分条形统计图如下,
;
(2)解:第1小组中“得分为5分”这一项的人数最多,则,
第2小组的平均分为(分),
则,
第3小组的中位数为第10和11个数,都是3(分),
则,
故答案为:5;;3;
(3)解:(人),
答:估计该校约有名学生竞赛成绩不低于90分.
48.(2023·黑龙江大庆)为了解我校学生本学期参加志愿服务的情况,随机调查了我校的部分学生,根据调查结果,绘制出如图统计图,若我校共有1000名学生,请根据相关信息,解答下列问题:
(1)本次接受调查的学生人数为________,扇形统计图中的________;
(2)求所调查的学生本学期参加志愿服务次数的平均数;
(3)学校为本学期参加志愿服务不少于7次的学生颁发“志愿者勋章”,请估计我校获“志愿者勋章”的学生人数.
【答案】(1)40,25
(2)7
(3)我校获“志愿者勋章”的学生人数是700人
【分析】(1)直接根据条形统计图和扇形统计图中的数据进行计算即可;
(2)根据平均数的定义进行计算即可得到答案;
(3)先求出本学期参加志愿服务不少于7次的学生人数所占的百8.2 概率
一、选择题
1.(2024·广东)长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )
A. B. C. D.
2.(2024·四川内江)如图所示的电路中,当随机闭合开关、、中的两个时,灯泡能发光的概率为( )
A. B. C. D.
3.(2023·山东淄博)“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )
A. B. C. D.
4.(2023·内蒙古呼和浩特)如图所示的两张图片形状大小完全相同,把两张图片全部从中间剪断,再把四张形状大小相同的小图片混合在一起.从四张图片中随机摸取一张,不放回,接着再随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是( )
A. B. C. D.
5.(2024·江苏徐州)如图,将一枚飞镖任意投掷到正方形镖盘内,若飞锤落在镖盘内各点的机会相等,则飞镖落在阴影区域的概率为( )
A. B. C. D.
6.(2024·山东济南)3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好选到同一个活动的概率是( )
A. B. C. D.
7.(2024·辽宁)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是( )
A.摸出白球 B.摸出红球 C.摸出绿球 D.摸出黑球
8.(2024·内蒙古通辽)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是( )
A. B. C. D.
9.(2024·贵州)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )
A.小星定点投篮1次,不一定能投中 B.小星定点投篮1次,一定可以投中
C.小星定点投篮10次,一定投中4次 D.小星定点投篮4次,一定投中1次
10.(2024·河南)豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )
A. B. C. D.
11.(2024·内蒙古包头)为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是( )
A. B. C. D.
二、填空题
12.(2024·湖北)小亮了解了祖冲之、刘徽、赵爽、杨辉、秦九韶这5位著名数学家的生平简介,知晓他们取得的伟大成就对我国乃至世界数学发展起到的巨大推进作用,准备在数学课上随机选取其中一位的成就进行分享,选到数学家赵爽的概率是 .
13.(2024·湖南长沙)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为 .
14.(2024·青海)如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是 .
15.(2024·湖南)有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是 .
16.(2023·青海西宁)有五张看上去无差别的卡片,正面分别写着,,,,0.背面朝上混合后随机抽取一张,取出的卡片正面的数字是无理数的概率是 .
17.(2023·江苏常州)如图,飞镖游戏板中每一块小正方形的面积相等.任意投掷飞镖1次且击中游戏板,则击中阴影部分的概率是 .
18.(2023·辽宁)如图,等边三角形是由9个大小相等的等边三角形构成,随机地往内投一粒米,落在阴影区域的概率为 .
19.(2024·山东济南)如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为 .
20.(2024·四川雅安)将,,,0,,这6个数分别写在6张同样的卡片上,从中随机抽取1张,卡片上的数为有理数的概率是 .
21.(2024·江苏苏州)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .
22.(2023·江苏盐城)如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为 .
23.(2023·四川攀枝花)如图,在正方形中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为 .
24.(2023·湖南益阳)从这10个整数中随机抽取1个数,抽到3的倍数的概率是 .
25.(2023·山东潍坊)投掷两枚骰子,朝上一面的点数之和为7的概率是 .
26.(2024·内蒙古)如图,有4张分别印有卡通西游图案的卡片:唐僧、孙悟空、猪八戒、沙悟净.现将这4张卡片(除图案不同外,其余均相同)放在不透明的盒子中,搅匀后从中随机取出1张卡片,然后放回并搅匀,再从中随机取出1张卡片,则两次取到相同图案的卡片的概率为 .
27.(2024·山东泰安)某学校在4月23日世界读书日举行“书香校园,全员阅读”活动.小明和小颖去学校图书室借阅书籍,小明准备从《西游记》、《骆驼祥子》、《水浒传》中随机选择一本,小颍准备从《西游记》、《骆驼祥子》、《朝花夕拾》中随机选择一本,小明和小颖恰好选中书名相同的书的概率是 .
28.(2024·山东德州)衣中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同,若从衣橱中各任取一件上衣和一条裤子,它们取自同一套的概率是 .
三、解答题
29.(2024·江苏常州)在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;
(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.
30.(2024·四川巴中)为了解全校学生对篮球、足球、乒乓球、羽毛球四项球类运动的喜爱情况,在全校随机抽取了名学生进行问卷调查,每名学生只选择一项球类运动填写问卷.将调查结果绘制成如下统计图,请你根据图中所提供的信息解答下列问题.
(1)求______,并补全条形统计图.
(2)若该校共有1200名学生,请估计喜欢乒乓球运动的学生有多少名?
(3)学校羽毛球队计划从甲、乙、丙、丁四名同学中挑选两名同学加入球队.请用画树状图或列表的方法计算恰好选中甲、乙两名同学的概率.
31.(2024·甘肃临夏)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
(1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
32.(2024·江西)某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.
(1)“学生甲分到A班”的概率是______;
(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.
33.(2024·江苏盐城)在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.
A.新四军纪念馆(主馆区);
B.新四军重建军部旧址(泰山庙):
C.新四军重建军部纪念塔(大铜马),
小明和小丽各自随机选择一个基地作为本次研学活动的第一站.
(1)小明选择基地A的概率为________:
(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.
34.(2024·四川南充)某研学基地开设有A,B,C,D四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).
根据图中信息,解答下列问题:
(1)参加调查统计的学生中喜爱B类研学项目有多少人?在扇形统计图中,求C类研学项目所在扇形的圆心角的度数.
(2)从参加调查统计喜爱D类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.
35.(2024·四川达州)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:
等级
分数段
频数 m
请根据表中提供的信息.解答下列问题:
(1)此次调查共抽取了______名选手,______,______;
(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;
(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.
36.(2023·山东青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.
37.(2023·山东泰安)2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京召开.为激励青少年争做党的事业接班人,某市团市委在党史馆组织了“红心永向党”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.
请根据相关信息解答下列问题:
(1)本次竞赛共有______名选手获奖,扇形统计图中扇形C的圆心角度数是______度;
(2)补全条形统计图;
(3)若该党史馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.
38.(2023·湖北武汉)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间(单位:)作为样本,将收集的数据整理后分为五个组别,其中A组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.
各组劳动时间的频数分布表
组别 时间 频数
5
20
15
8
各组劳动时间的扇形统计图
请根据以上信息解答下列问题.
(1)A组数据的众数是________;
(2)本次调查的样本容量是________,B组所在扇形的圆心角的大小是________;
(3)若该校有名学生,估计该校学生劳动时间超过的人数.
39.(2024·西藏)为了纪念西藏民主改革65周年,弘扬爱国主义精神,学校举办了“感悟历史奇迹,担当时代使命”的历史知识竞赛活动.从七、八年级中各随机抽取了10名学生的竞赛成绩(单位:分)如下:
七年级:80 96 82 92 89 84 73 90 89 97
八年级:94 82 95 94 85 89 92 79 98 93
请根据以上信息,解答下列问题:
(1)七年级这10名学生成绩的中位数是________;八年级这10名学生成绩的众数是________;
(2)若成绩90分以上(含90分)定为优秀等次,请估计八年级400名学生中有多少名学生能达到优秀等次;
(3)根据本次竞赛成绩,七、八年级各推荐了两名学生,学校准备再从这四名学生中随机抽取两人参加市级竞赛,请用列表或画树状图的方法求抽到一名七年级学生和一名八年级学生的概率.
40.(2024·海南)根据以下调查报告解决问题.
调查主题 学校八年级学生视力健康情况
背景介绍 学生视力健康问题引起社会广泛关注.某学习小组为了解本校八年级学生视力情况,随机收集部分学生《视力筛查》数据.
调查结果
八年级学生右眼视力领数分布表
右眼视力 频数
3
24
18
12
9
9
15
合计 90
建议:……
(说明:以上仅展示部分报告内容).
(1)本次调查活动采用的调查方式是________(填写“普查”或“抽样调查”):
(2)视力在“”是视力“最佳矫正区”,该范围的数据为:,这组数据的中位数是________;
(3)视力低于属于视力不良,该校八年级学生有600人,估计该校八年级右眼视力不良的学生约为_______人;
(4)视力在“”范围有两位男生和一位女生,从中随机抽取两位学生采访,恰好抽到两位男生的概率是________;
(5)请为做好近视防控提一条合理的建议.
41.(2024·江苏南通)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.
(1)甲在2号出入口开展志愿服务活动的概率为______;
(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.
42.(2024·山东东营)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,东营市某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间分成五档:A档:;B档:;C档:;D档:;E档:).调查的八年级男生、女生劳动时间的不完整统计图如下:
根据以上信息,回答下列问题:
(1)本次调查中,共调查了_______名学生,补全条形统计图;
(2)调查的男生劳动时间在C档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.
(3)学校为了提高学生的劳动意识,现从E档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.
43.(2024·四川雅安)某中学对八年级学生进行了教育质量监测,随机抽取了参加15米折返跑的部分学生成绩(成绩划分为优秀、良好、合格与不合格四个等级),并绘制了不完整的统计图(如图所示).根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)若该校八年级学生有300人,试估计该校八年级学生15米折返跑成绩不合格的人数;
(3)从所抽取的优秀等级的学生A、B、C、D、E中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求恰好抽到A、B两位同学的概率.
44.(2024·四川资阳)我国古诗词源远流长.某校以“赏诗词之美、寻文化之根、铸民族之魂”为主题,组织学生开展了古诗词知识竞赛活动.为了解学生对古诗词的掌握情况,该校随机抽取了部分学生的竞赛成绩,将成绩分为A,B,C,D四个等级,并绘制成如图所示的两幅不完整的统计图:
(1)本次共抽取了________名学生的竞赛成绩,并补全条形统计图;
(2)若该校共有2000人参加本次竞赛活动,估计竞赛成绩为B等级的学生人数;
(3)学校在竞赛成绩为A等级中的甲、乙、丙、丁这4名学生里,随机选取2人参加经典诵读活动,用画树状图或列表法求出甲、乙两人中恰好有1人被选中的概率.
45.(2024·山东济宁)为做好青少年安全教育工作,某校开展了主题为“珍爱生命,牢记安全”的知识竞赛(共20题,每题5分,满分100分).该校从学生成绩都不低于80分的八年级(1)班和(3)班中,各随机抽取了20名学生成绩进行整理,绘制了不完整的统计表、条形统计图及分析表.
【收集数据】
八年级(1)班20名学生成绩:85,95,100,90,90,80,85,90,80,100,80,85,95,90,95,95,95,95,100,95.
八年级(3)班20名学生成绩:90,80,100,95,90,85,85,100,85,95,85,90,90,95,90,90,95,90,95,95.
【描述数据】
八年级(1)班20名学生成绩统计表
分数 80 85 90 95 100
人数 3 3 a b 3
【分析数据】
八年级(1)班和(3)班20名学生成绩分析表
统计量 班级 平均数 中位数 众数 方差
八年级(1)班 95 41.5
八年级(3)班 91 90 26.5
【应用数据】
根据以上信息,回答下列问题.
(1)请补全条形统计图:
(2)填空:______,______;
(3)你认为哪个班级的成绩更好一些?请说明理由;
(4)从上面5名得100分的学生中,随机抽取2名学生参加市级知识竞赛.请用列表法或画树状图法求所抽取的2名学生恰好在同一个班级的概率.
46.(2024·内蒙古呼伦贝尔)从一副普通的扑克牌中取出五张牌,它们的牌面数字分别是4,4,5,5,6.
(1)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张,则抽取的这张牌的牌面数字是4的概率是多少?
(2)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张(不放回),再从中随机抽取第二张.请用列表或画树状图的方法,求抽取的这两张牌的牌面数字之和为奇数的概率.
47.(2024·吉林长春)2021年吉林省普通高中开始施行新高考选科模式,此模式有若干种学科组合,每位高中生可根据自己的实际情况选择一种.一对双胞胎姐妹考入同一所高中且选择了相同组合,该校要将所有选报这种组合的学生分成、、三个班,其中每位学生被分到这三个班的机会均等.用画树状图(或列表)的方法,求这对双胞胎姐妹被分到同一个班的概率.
48.(2024·广东广州)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对,两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):
组 75 78 82 82 84 86 87 88 93 95
组 75 77 80 83 85 86 88 88 92 96
(1)求组同学得分的中位数和众数;
(2)现从、两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.
49.(2024·四川广元)广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x表示,总分为100分,共分成五个等级:A:;B:;C:;D:;E:).并绘制了如下尚不完整的统计图.
抽取学生成绩等级人数统计表
等级 A B C D E
人数 m 27 30 12 6
其中扇形图中C等级区域所对应的扇形的圆心角的度数是.
(1)样本容量为______,______;
(2)全校1200名学生中,请估计A等级的人数;
(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.
50.(2024·内蒙古赤峰)某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:
收集数据 77 78 76 72 84 75 91 85 78 79
82 78 76 79 91 91 76 74 75 85
75 91 80 77 75 75 87 85 76 77
整理、描述数据
成绩/分 72 74 75 76 77 78 79 80 82 84 85 87 91
人数/人 1 1 a 4 3 3 b 1 1 1 3 1 4
分析数据样本数据的平均数、众数、中位数如下表:
平均数 众数 中位数
80 c 78
解决问题
(1)表格中的______;______;______;
(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;
(3)学校要从91分的A,B,C,D四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A,B两名队员恰好同时被选中的概率.
51.(2024·贵州)根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:
男生成绩:7.61,7.38,7.65,7.38,7.38
女生成绩:8.23,8.27,8.16,8.26,8.32
根据以上信息,解答下列问题:
(1)男生成绩的众数为______,女生成绩的中位数为______;
(2)判断下列两位同学的说法是否正确.
(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.
52.(2024·四川乐山)乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.
根据以上信息,回答下列问题:
(1)本次抽取的游客总人数为______人,扇形统计图中m的值为______;
(2)请补全条形统计图;
(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.
53.(2024·陕西)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次.
(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________.
(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.
54.(2024·河北)甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.
(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;
(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
55.(2024·四川眉山)为响应国家政策,保障耕地面积,提高粮食产量,确保粮食安全,我市开展高标准农田改造建设,调查统计了其中四台不同型号的挖掘机(分别为型,型,型,型)一个月内改造建设高标准农田的面积(亩),并绘制成如图不完整的统计图表:
改造农田面积统计表
型号
亩数 16 20 12
利用图中的信息,解决下列问题:
(1)①______;
②扇形统计图中的度数为______.
(2)若这四台不同型号的挖掘机共改造建设了960亩高标准农田,估计其中型挖掘机改造建设了多少亩?
(3)若从这四台不同型号的挖掘机中随机抽调两台挖掘机参加其它任务,请用画树状图或列表的方法求出恰好同时抽到,两种型号挖掘机的概率.
56.(2024·江苏苏州)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.
(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;
(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)
57.(2024·甘肃)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.
(1)请用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲乙双方公平吗?请说明理由.
58.(2024·山东烟台)“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:;B组:;C组:;D组:),并绘制了如下不完整的条形统计图和扇形统计图.
(1)请补全条形统计图;
(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;
(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.
59.(2024·四川凉山)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:
请根据统计图回答下列问题:
(1)本次调查的总人数是______人,估计全校名学生中最喜欢乒乓球项目的约有______人;
(2)补全条形统计图;
(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.
60.(2024·四川广安)睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.
学生类别 学生平均每天睡眠时间(单位:小时)
(1)本次抽取调查的学生共有______人,扇形统计图中表示类学生平均每天睡眠时间的扇形的圆心角度数为______.
(2)请补全条形统计图.
(3)被抽取调查的类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.
61.(2024·江苏连云港)数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A、字谜B、字谜C、字谜D,其中字谜A、字谜B是猜“数学名词”,字谜C、字谜D是猜“数学家人名”.
(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;
(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.
62.(2024·四川德阳)2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A:100米直道竞速赛,B:200米直道竟速赛,C:500米直道竞速赛,D:3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):
市民最关注的比赛项目人数统计表 比赛项目ABCD关注人数4230ab
(1)直接写出a、b的值和D所在扇形圆心角的度数;
(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?
(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率.
63.(2024·四川宜宾)某校为了落实“五育并举”,提升学生的综合素养.在课外活动中开设了四个兴趣小组:A.插花组:B.跳绳组;C.话剧组;D.书法组.为了解学生对每个兴趣小组的参与情况,随机抽取了部分学生进行调查,并将调查结果绘制成不完整的统计图.
请结合图中信息解答下列问题:
(1)本次共调查了___________名学生,并将条形统计图补充完整;
(2)话剧组所对应扇形的圆心角为___________度;
(3)书法组成绩最好的4名学生由3名男生和1名女生构成.从中随机抽取2名参加比赛,请用列表或画树状图的方法,求刚好抽到1名男生与1名女生的概率.
64.(2024·四川自贡)某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).
成绩 频数 百分比
不及格 3 a
及格 b
良好 45 c
优秀 32
图1 学生体质健康统计表
(1)图1中________,________,________;
(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;
(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.
65.(2023·辽宁丹东)为提高学生的安全意识,某学校组织学生参加了“安全知识答题”活动.该校随机抽取部分学生答题成绩进行统计,将成绩分为四个等级:A(优秀),B(良好),C(一般),D(不合格),并根据结果绘制成如图所示的两幅不完整的统计图.
根据图中所给信息解答下列问题:
(1)这次抽样调查共抽取______人,条形统计图中的______;
(2)将条形统计图补充完整,在扇形统计图中,求C等所在扇形圆心角的度数;
(3)该校有1200名学生,估计该校学生答题成绩为A等和B等共有多少人;
(4)学校要从答题成绩为A等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁的概率.
66.(2023·江苏盐城)随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路和省级公路两条路线;从乙镇到盐城南洋国际机场,有省级公路、高速公路和城市高架三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).
(1)从甲镇到乙镇,小华所选路线是乡村公路A的概率为_________.
(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.
67.(2023·西藏)某校为了改善学生伙食状况,更好满足校园内不同民族学生的饮食需求,充分体现对不同民族学生饮食习惯的尊重,进行了一次随机抽样调查,调查了各民族学生的人数,绘制了两幅不完整的统计图,如图.
请根据图中给出的信息,回答下列问题:
(1)调查的样本容量为______,并把条形统计图补充完整;
(2)珞巴族所在扇形圆心角的度数为______;
(3)学校为了举办饮食文化节,从调查的四个民族的学生中各选出一名学生,再从选出的四名学生中随机选拔两名主持人,请用列表或画树状图的方法求出两名主持人中有一名是藏族学生的概率.
68.(2023·江苏淮安)小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A:智取芭蕉扇、B:三打白骨精、C:盘丝洞)中各自随机选择一个项目游玩.
(1)小华选择C项目的概率是_________;
(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.
69.(2023·内蒙古)如图,,两个带指针的转盘分别被分成三个面积相等的扇形,转盘上的数字分别是,,5,转盘上的数字分别是6,,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动,两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).
(1)转动转盘,转盘指针指向正数的概率是________;
(2)若同时转动两个转盘,转盘指针所指的数字记为,转盘指针所指的数字记为,若,则小聪获胜;若,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.
70.(2023·青海)为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对“五一”假期期间的游客去向进行了随机抽样调查,并绘制如下不完整的统计图,请根据图1,图2中所给的信息,解答下列问题:
(1)此次抽样调查的样本容量是______;
(2)将图1中的条形统计图补充完整;
(3)根据抽样调查结果,“五一”假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客约有多少万人;
(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.
71.(2023·辽宁盘锦)某校为了解学生平均每天阅读时长情况,随机抽取了部分学生进行抽样调查,将调查结果整理后绘制了以下不完整的统计图表(如下图所示).
学生平均每天阅读时长情况统计表
平均每天阅读时长x/min 人数
学生平均每天阅读时长情况扇形统计图
根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生,统计表中______.
(2)求扇形统计图中学生平均每天阅读时长为“”所对应的圆心角度数.
(3)若全校共有名学生,请估计平均每天阅读时长为“”的学生人数,
(4)该校某同学从《朝花夕拾》《红岩》《骆驼祥子》《西游记》四本书中选择两本进行阅读,这四本书分别用相同的卡片,,,标记,先随机抽取一张卡片后不放回,再随机抽取一张卡片,请用列表法或画树状图法,求该同学恰好抽到《朝花夕拾》和《西游记》的概率.
72.(2023·陕西)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3,这些小球除标有的数字外都相同.
(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 ;
(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.
73.(2023·辽宁)为了推进“优秀传统文化进校园”活动,学校准备在七年级成立四个课外活动小组,分别是:.民族舞蹈组;.经典诵读组;.民族乐器组;.地方戏曲组.为了了解学生最喜欢哪一个活动小组,学校从七年级全体学生中随机抽取部分学生进行问卷调查,每人必须选择且只能选择一项,并将调查结果绘制成如下两幅统计图.
请根据图中提供的信息解答下列问题:
(1)本次调查的学生共有________人;
(2)在扇形统计图中,求组所对应的扇形圆心角的度数,并补全条形统计图;
(3)在重阳节来临之际,学校计划组织学生到敬老院为老人表演节目,准备从这个小组中随机抽取个小组汇报演出,请你用列表法或画树状图法,求选中的个小组恰好是和小组的概率.
74.(2023·湖北恩施)春节、清明、端午、中秋是我国四大传统节日,每个传统节日都有丰富的文化内涵,体现了厚重的家国情怀;在文化的传承与创新中让我们更加热爱传统文化,更加坚定文化自信.因此,端午节前,学校举行“传经典·乐端午”系列活动,活动设计的项目及要求如下:A-包粽子,B-划旱船,C-诵诗词,D-创美文;人人参加,每人限选一项.为了解学生的参与情况,校团支部随机抽取了部分学生进行调查,并根据调查结果绘制了如下不完整的统计图,如图.请根据统计图中的信息,回答下列问题:
(1)请直接写出统计图中m的值,并补全条形统计图;
(2)若学校有1800名学生,请估计选择D类活动的人数;
(3)甲、乙、丙、丁四名学生都是包粽子的能手,现从他们4人中选2人参加才艺展示,请用列表或画树状图的方法,求甲、乙2人同时被选中的概率.
75.(2023·辽宁营口)某校在评选“劳动小能手”活动中,随机调查了部分学生的周末家务劳动时间,根据调查结果,将劳动时长划分为A,B,C,D四个组别,并绘制成如下不完整统计图表
学生周末家务劳动时长分组表
组别 A B C D
t(小时)
请根据图表中的信息解答下列问题:
(1)这次抽样调查共抽取______名学生,条形统计图中的______,D组所在扇形的圆心角的度数是______;
(2)已知该校有900名学生,根据调查结果,请你估计该校周末家务劳动时长不低于1小时的学生共有多少人?
(3)班级准备从周末家务劳动时间较长的三男一女四名学生中,随机抽取两名学生参加“我劳动,我快乐”的主题演讲活动,请用列表法或画树状图法求出恰好选中两名男生的概率.
76.(2023·江苏无锡)为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.
(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是_________.
(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.
77.(2023·辽宁)6月5日是世界环境日,为提高学生的环保意识,某校举行了环保知识竞赛,从全校学生的成绩中随机抽取了部分学生的成绩进行分析,把结果划分为4个等级:(优秀);(良好);(中);(合格).并将统计结果绘制成如下两幅统计图.
(1)本次抽样调查的学生共有___________名;
(2)补全条形统计图;
(3)该校共有1200名学生,请你估计本次竞赛获得B等级的学生有多少名?
(4)在这次竞赛中,九年级一班共有4人获得了优秀,4人中有两名男同学,两名女同学,班主任决定从这4人中随机选出2人在班级为其他同学做培训,请你用列表法或画树状图法,求所选2人恰好是一男一女的概率.
78.(2024·江苏徐州)不透明的袋子中装有2个红球与2个白球,这些球除颜色外无其他差别.
(1)甲从袋子中随机摸出1个球,摸到红球的概率为______;
(2)甲、乙两人分别从袋子中随机摸出1个球(不放回),用列表或画树状图的方法,求两人摸到相同颜色球的概率.
79.(2024·山东青岛)学校拟举办庆祝“建国75周年”文艺汇演,每班选派一名志愿者,九年级一班的小明和小红都想参加,于是两人决定一起做“摸牌”游戏,获胜者参加.规则如下:将牌面数字分别为1,2,3的三张纸牌(除牌面数字外,其余都相同)背面朝上,洗匀后放在桌面上,小明先从中随机摸出一张,记下数字后放回并洗匀,小红再从中随机摸出一张.若两次摸到的数字之和大于4,则小明胜;若和小于4,则小红胜;若和等于4,则重复上述过程.
(1)小明从三张纸牌中随机摸出一张,摸到“1”的概率是______;
(2)请用列表或画树状图的方法,说明这个游戏对双方是否公平.
80.(2024·山东淄博)希望中学做了如下表的调查报告(不完整):
调查目的 了解本校学生:(1)周家务劳动的时间;(2)最喜欢的劳动课程
调查方式 随机问卷调查
调查对象 部分七年级学生(该校所有学生周家务劳动时间都在范围内)
调查内容 (1)你的周家务劳动时间(单位:)是①②③④⑤ (2)你最喜欢的劳动课程是(必选且只选一门) A家政 B.烹饪 C.剪纸 D.园艺 E.陶艺
调查结果
结合调查信息,回答下列问题:
(1)参与本次问卷调查的学生人数________名;在扇形统计图中,第④组所对应扇形的圆心角的度数为________度;
(2)补全周家务劳动时间的频数直方图:
(3)若该校七年级学生共有800人,请估计最喜欢“烹饪”课程的学生人数;
(4)小红和小颖分别从“家政”等五门最喜欢的劳动课程中任选一门学习,请用列表法或画树状图的方法,求两人恰好选到同一门课程的概率.
81.(2024·江苏镇江)有甲、乙两只不透明的袋子,每只袋子中装有红球和黄球若干,各袋中所装球的总个数相同,这些球除颜色外都相同.实践组用甲袋、创新组用乙袋各自做摸球试验:两人一组,一人从袋中任意摸出1个球,另一人记下颜色后将球放回并搅匀,各组连续做这样的试验,将记录的数据绘制成如下两种条形统计图:
(1)__________图能更好地反映各组试验的总次数,__________图能更好地反映各组试验摸到红球的频数(填“A”或“B”);
(2)求实践组摸到黄球的频率;
(3)根据以上两种条形统计图,你还能获得哪些信息(写出一条即可)?
82.(2024·江苏宿迁)某校组织七年级学生开展以“讲好红色故事,传承红色基因”为主题的研学活动,策划了四条研学线路供学生选择:A彭雪枫纪念馆,B淮海军政大礼堂,C爱园烈士陵园,D大王庄党性教育基地,每名学生只能任意选择一条线路.
(1)小刚选择线路A的概率为________;
(2)请用画树状图或列表的方法,求小刚和小红选择同一线路的概率.
参考答案与详解
一、单选题
1.(2024·广东)长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )
A. B. C. D.
【答案】A
【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.
【详解】解:根据题意,选中“巴蜀文化”的概率是,
故选:A.
2.(2024·四川内江)如图所示的电路中,当随机闭合开关、、中的两个时,灯泡能发光的概率为( )
A. B. C. D.
【答案】A
【分析】本题主要考查了树状图法以及概率公式,正确的画出树状图是解此题的关键.画树状图,共有6种等可能的结果,其中能够让灯泡发光的结果有4种,再由概率公式求解即可.
【详解】解:由电路图可知,当同时闭合开关和, 和时,灯泡能发光,
画树状图如下:
共有6种等可能结果,其中灯泡能发光的有4种,
∴灯泡能发光的概率为,
故选:A.
3.(2023·山东淄博)“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )
A. B. C. D.
【答案】B
【分析】画出树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式求解.
【详解】解:画树状图如图:
共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,
∴小刚、小强两人恰好选择同一场馆的概率,
故选:B.
4.(2023·内蒙古呼和浩特)如图所示的两张图片形状大小完全相同,把两张图片全部从中间剪断,再把四张形状大小相同的小图片混合在一起.从四张图片中随机摸取一张,不放回,接着再随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是( )
A. B. C. D.
【答案】B
【分析】四张形状相同的小图片分别用、、、表示,其中和合成一张完整图片,和合成一张完整图片,用列表法或画树状图法可展示所有12种等可能的结果,再找出两张小图片恰好合成一张完整图片的结果数,然后根据概率公式求解即可.
【详解】解:四张形状相同的小图片分别用、、、表示,其中和合成一张完整图片,和合成一张完整图片,
画树状图如下:
共有12种等可能的结果,其中两张小图片恰好合成一张完整图片的结果数为4,
所以两张小图片恰好合成一张完整图片的概率.
故选:B.
5.(2024·江苏徐州)如图,将一枚飞镖任意投掷到正方形镖盘内,若飞锤落在镖盘内各点的机会相等,则飞镖落在阴影区域的概率为( )
A. B. C. D.
【答案】C
【分析】本题考查几何概率的知识,求出小正方形的面积是关键.设,则圆的直径为,求出小正方形的面积,即可求出几何概率.
【详解】解:如图:连接,,设,则圆的直径为,
∵四边形是正方形,
∴,
∴小正方形的面积为:,
则飞镖落在阴影区域的概率为:.
故选:C.
6.(2024·山东济南)3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好选到同一个活动的概率是( )
A. B. C. D.
【答案】C
【分析】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.正确画出树状图是解题的关键.画树状图,共有9种等可能的结果,小红和小丽恰好选到同一个活动的结果有3种,再由概率公式求解即可.
【详解】解:把“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个活动分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,小红和小丽恰好选到同一个活动的结果有3种,
小红和小丽恰好选到同一个活动的概率为,
故选:C.
7.(2024·辽宁)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是( )
A.摸出白球 B.摸出红球 C.摸出绿球 D.摸出黑球
【答案】B
【分析】本题考查了概率,熟练掌握概率公式是解题关键.分别求出摸出四种颜色球的概率,即可得到答案.
【详解】解:A、摸出白球的概率为,不符合题意;
B、摸出红球,符合题意;
C、摸出绿球,不符合题意;
D、摸出黑球,不符合题意;
故选:B.
8.(2024·内蒙古通辽)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是( )
A. B. C. D.
【答案】C
【分析】本题主要考查了列表法或树状图法求概率.根据题意,列出表格,可得一共有9种等可能结果,其中两次都摸出白球的有4种,再由概率公式计算,即可求解.
【详解】解:根据题意,列出表格如下:
红 白1 白2
红 (红,红) (白1,红) (白2,红)
白1 (红,白1) (白1,白1) (白2,白1)
白2 (红,白2) (白1,白2) (白2,白2)
一共有9种等可能结果,其中两次都摸出白球的有4种,
所以两次都摸出白球的概率是.
故选:C
9.(2024·贵州)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )
A.小星定点投篮1次,不一定能投中 B.小星定点投篮1次,一定可以投中
C.小星定点投篮10次,一定投中4次 D.小星定点投篮4次,一定投中1次
【答案】A
【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.
【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A正确,选项B错误;
小星定点投篮10次,不一定投中4次,故选项C错误;
小星定点投篮4次,不一定投中1次,故选项D错误
故选:A.
10.(2024·河南)豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )
A. B. C. D.
【答案】D
【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.
【详解】解:把3张卡片分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,
∴两次抽取的卡片图案相同的概率为.
故选∶D.
11.(2024·内蒙古包头)为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是( )
A. B. C. D.
【答案】D
【分析】本题考查概率的计算,掌握画树状图法或列表法是关键,事件发生的概率事件发生的次数所有可能出现的次数,解题的易错点是分清题目中抽签是否放回.先画树状图求出两位同学恰好都抽到同一个阅读项目的情况,再根据概率公式求解即可.
【详解】解:设《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目分别为,
画树状图如下:
一共有16种等可能的结果,其中恰好抽到同一个阅读项目的结果有4种可能,
∴他们恰好抽到同一个阅读项目的概率是,
故选:D.
二、填空题
12.(2024·湖北)小亮了解了祖冲之、刘徽、赵爽、杨辉、秦九韶这5位著名数学家的生平简介,知晓他们取得的伟大成就对我国乃至世界数学发展起到的巨大推进作用,准备在数学课上随机选取其中一位的成就进行分享,选到数学家赵爽的概率是 .
【答案】/0.2
【分析】此题考查概率公式,如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种可能,那么事件的概率(A).根据概率公式计算即可.
【详解】解:因为总共有5人,
所以从中任选一个,恰好是赵爽是概率是.
故答案为:.
13.(2024·湖南长沙)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为 .
【答案】/
【分析】本题考查概率公式,掌握概率的意义是解题的关键.
利用概率公式直接进行计算.
【详解】解:小明家参与抽奖,获得一等奖的概率为,
故答案为:.
14.(2024·青海)如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是 .
【答案】
【分析】本题主要考查了求概率.直接根据概率公式计算,即可求解.
【详解】解:∵有3条路径,有1条路径树枝上有食物,
∴它获得食物的概率是.
故答案为:
15.(2024·湖南)有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是 .
【答案】
【分析】本题考查了概率,熟练掌握概率公式是解本题的关键.概率所求情况数与总情况数之比.
根据概率公式计算即可.
【详解】解:∵共有4枚棋子,
∴从中任意摸出一张,恰好翻到棋子“”的概率是.
故答案为:
16.(2023·青海西宁)有五张看上去无差别的卡片,正面分别写着,,,,0.背面朝上混合后随机抽取一张,取出的卡片正面的数字是无理数的概率是 .
【答案】
【分析】找出无理数的个数,再根据概率公式计算即可.
【详解】解:在,,,,0中,
无理数有,,共2个,
∴随机抽取一张,取出的卡片正面的数字是无理数的概率是,
故答案为:.
17.(2023·江苏常州)如图,飞镖游戏板中每一块小正方形的面积相等.任意投掷飞镖1次且击中游戏板,则击中阴影部分的概率是 .
【答案】
【分析】根据几何概率的求解公式即可求解.
【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为5个小正方形的面积,
∴击中阴影部分的概率是,
故答案为:.
18.(2023·辽宁)如图,等边三角形是由9个大小相等的等边三角形构成,随机地往内投一粒米,落在阴影区域的概率为 .
【答案】
【分析】根据概率的计算方法即可求解.
【详解】解:∵一粒米可落在9个等边三角形内的任一个三角形内,而落在阴影区域的只有5种可能,
∴一粒米落在阴影区域的概率为;
故答案为:.
19.(2024·山东济南)如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为 .
【答案】
【分析】根据简单地概率公式计算即可.
本题考查了简单地概率公式计算,熟练掌握公式是解题的关键.
【详解】解:根据题意,一共有4种等可能性,其中红色的等可能性只有1种,
故当转盘停止时,指针落在红色区域的概率为.
故答案为:.
20.(2024·四川雅安)将,,,0,,这6个数分别写在6张同样的卡片上,从中随机抽取1张,卡片上的数为有理数的概率是 .
【答案】
【分析】本题考查概率的求法与运用,有理数与无理数的识别,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.先根据无理数的定义得到取到有理数的有,,0,3.14这4种结果,再根据概率公式即可求解.
【详解】解:将,,,0,,3.14这6个数分别写在6张相同的卡片上,字面朝下随意放在桌上,任取一张,有6种等可能结果,其中取到有理数的有,,0,3.14这4种结果,
所以取到有理数的概率为,
故答案为:.
21.(2024·江苏苏州)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .
【答案】
【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,
∴指针落在阴影区域的概率为,
故答案为:.
22.(2023·江苏盐城)如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为 .
【答案】
【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5,
∴飞镖落在阴影部分的概率是,
故答案为:.
23.(2023·四川攀枝花)如图,在正方形中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为 .
【答案】/
【分析】将图中阴影面积除以正方形面积即可求出米粒落在图中阴影部分的概率.
【详解】解:设正方形的边长为,则4个扇形的半径为,
,
故答案为:.
24.(2023·湖南益阳)从这10个整数中随机抽取1个数,抽到3的倍数的概率是 .
【答案】/
【分析】直接利用概率公式求解即可.
【详解】解:由题意可得:在中共有10个整数,3的倍数只有3,6,9,共3个,
∴随机抽取一个数,抽到3的倍数的概率是,
故答案为:.
25.(2023·山东潍坊)投掷两枚骰子,朝上一面的点数之和为7的概率是 .
【答案】
【分析】先画出树状图,从而可得投掷两枚骰子,朝上一面的点数的所有等可能的结果,再找出投掷两枚骰子,朝上一面的点数之和为7的结果,然后利用概率公式计算即可得.
【详解】解:由题意,画出树状图如下:
由图可知,投掷两枚骰子,朝上一面的点数的所有等可能的结果共有36种,其中,投掷两枚骰子,朝上一面的点数之和为7的结果有6种,
则投掷两枚骰子,朝上一面的点数之和为7的概率为,
故答案为:.
26.(2024·内蒙古)如图,有4张分别印有卡通西游图案的卡片:唐僧、孙悟空、猪八戒、沙悟净.现将这4张卡片(除图案不同外,其余均相同)放在不透明的盒子中,搅匀后从中随机取出1张卡片,然后放回并搅匀,再从中随机取出1张卡片,则两次取到相同图案的卡片的概率为 .
【答案】
【分析】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.先画出树状图,从而可得随机两次取出卡片的所有等可能的结果,再找出两次取到相同图案的卡片的结果,然后利用概率公式求解即可得.
【详解】解:将这4张卡片记为,画出树状图如下:
由图可知,随机两次取出卡片的所有等可能的结果共有16种,其中,两次取到相同图案的卡片的结果有4种,
则两次取到相同图案的卡片的概率为,
故答案为:.
27.(2024·山东泰安)某学校在4月23日世界读书日举行“书香校园,全员阅读”活动.小明和小颖去学校图书室借阅书籍,小明准备从《西游记》、《骆驼祥子》、《水浒传》中随机选择一本,小颍准备从《西游记》、《骆驼祥子》、《朝花夕拾》中随机选择一本,小明和小颖恰好选中书名相同的书的概率是 .
【答案】
【分析】本题主要考查列表法与树状图法、概率公式等知识,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.
先列表可得出所有等可能的结果数以及小明和小颖恰好选中书名相同的书的结果数,再利用概率公式计算即可.
【详解】解:将《西游记》、《骆驼祥子》、《水浒传》、《朝花夕拾》分别记为A,B,C,D,
列表如下:
A B D
A (A,A) (A,B) (A,D)
B (B,A) (B,B) (B,D)
C (C,A) (C,B) (C,D)
共有9种等可能的结果,其中小明和小颖恰好选中书名相同的书的结果有2种,
∴小明和小颖恰好选中书名相同的书的概率为.
故答案为:.
28.(2024·山东德州)衣中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同,若从衣橱中各任取一件上衣和一条裤子,它们取自同一套的概率是 .
【答案】
【分析】本题考查了列表法或树状图法求概率,树状图法可以不重复不遗漏的列出所有等可能的结果,概率=所求情况数与总情况数之比.
画树状图,共有9种等可能结果,其中它们取自同一套的有3种可能,再由概率公式求解即可.
【详解】解:令3件上衣分别为A、B、C,对应的裤子分别为a、b、c,画树状图如下:
由树状图可知,共有9种等可能结果,其中取自同一套的有3种可能,
∴它们取自同一套的概率为,
故答案为:.
三、解答题
29.(2024·江苏常州)在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.
(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;
(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.
【答案】(1)
(2)
【分析】本题主要考查了简单的概率计算,树状图法或列表法求解概率:
(1)直接根据概率计算公式求解即可;
(2)先列表得到所有等可能性的结果数,再找到甲获胜的结果数,最后依据概率计算公式求解即可.
【详解】(1)解:∵一共有3支签,写有“石头”的签有1支,且每支签被抽到的概率相同,
∴从盒子中任意抽出1支签,抽到“石头”的概率是,
故答案为:;
(2)解:设分别用A、B、C表示“石头”、“剪子”、“布”,列表如下:
甲乙
由表格可知,一共有6种等可能性的结果数,其中甲获胜的结果数有,,,共3种,
∴甲获胜的概率为.
30.(2024·四川巴中)为了解全校学生对篮球、足球、乒乓球、羽毛球四项球类运动的喜爱情况,在全校随机抽取了名学生进行问卷调查,每名学生只选择一项球类运动填写问卷.将调查结果绘制成如下统计图,请你根据图中所提供的信息解答下列问题.
(1)求______,并补全条形统计图.
(2)若该校共有1200名学生,请估计喜欢乒乓球运动的学生有多少名?
(3)学校羽毛球队计划从甲、乙、丙、丁四名同学中挑选两名同学加入球队.请用画树状图或列表的方法计算恰好选中甲、乙两名同学的概率.
【答案】(1)200,图见详解
(2)312名
(3)
【分析】(1)根据喜爱篮球的人数和所占的百分比即可求出,然后求出喜欢乒乓球的人数即可;
(2)用该校的总人数乘以最喜爱乒乓球的学生的人数所占的百分比即可;
(3)画出树状图即可解决问题.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.
【详解】(1)解: (名,
喜欢乒乓球的人数;(名,
补全统计图:
故答案为:200;
(2)解:(名,
答:估计喜欢乒乓球运动的学生有312名;
(3)解:画树状图得:
一共有12种等可能出现的结果,符合条件的结果有2种,
恰好选中甲、乙两名同学的概率为.
31.(2024·甘肃临夏)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
(1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
【答案】(1)
(2)
【分析】本题考查简单的概率计算,列表法或画树状图法求概率,掌握概率公式和正确的列出表格或画出树状图是解题关键.
(1)直接利用概率公式计算即可;
(2)根据题意列出表格或画出树状图表示出所有等可能的结果,再找出抽取两张卡片内容均为化学变化的结果,最后根据概率公式计算即可.
【详解】(1)解:小临从四张卡片中随机抽取一张,抽中卡片的概率是.
故答案为:;
(2)解:根据题意可列表格如下,
A B C D
A A,B A,C A,D
B B,A B,C B,D
C C,A C,B C,D
D D,A D,B D,C
根据表格可知共有12种等可能的结果,其中抽取两张卡片内容均为化学变化的结果有2种,
∴抽取两张卡片内容均为化学变化的概率为.
32.(2024·江西)某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.
(1)“学生甲分到A班”的概率是______;
(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.
【答案】(1)
(2)甲、乙两位新生分到同一个班的概率为.
【分析】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示出总结果数是解答此类问题的关键.
(1)根据概率公式计算可得;
(2)用画树状图列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.
【详解】(1)解:有A,B,C三个班级,“学生甲分到A班”有一种情况,
则“学生甲分到A班”的概率是,
故答案为:;
(2)解:画树状图如图:
共有9个等可能的结果,甲、乙两位新生分到同一个班的有3种情况,
∴甲、乙两位新生分到同一个班的概率为.
33.(2024·江苏盐城)在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.
A.新四军纪念馆(主馆区);
B.新四军重建军部旧址(泰山庙):
C.新四军重建军部纪念塔(大铜马),
小明和小丽各自随机选择一个基地作为本次研学活动的第一站.
(1)小明选择基地A的概率为________:
(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.
【答案】(1)
(2)
【分析】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.
(1)直接利用概率公式可得答案.
(2)列表可得出所有等可能的结果数以及小明和小丽选择相同基地的结果数,再利用概率公式可得出答案.
【详解】(1)解:由题意得,小明选择基地A的概率为;
故答案为:
(2)解:列表如下:
A B C
A
B
C
共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,
∴小明和小丽选择相同基地的概率为.
34.(2024·四川南充)某研学基地开设有A,B,C,D四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).
根据图中信息,解答下列问题:
(1)参加调查统计的学生中喜爱B类研学项目有多少人?在扇形统计图中,求C类研学项目所在扇形的圆心角的度数.
(2)从参加调查统计喜爱D类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.
【答案】(1)喜爱B类研学项目有8人,C类研学项目所在扇形的圆心角的度数为
(2)
【分析】本题考查条形图和扇形图的综合应用,列表法求概率:
(1)类项目的人数除以所占的比例求出总人数,再用总人数乘以类项目的人数所占的比例求解即可;
(2)设喜爱D类研学项目的4名学生分别记为男1,男2,女1,女2,列出表格,利用概率公式进行计算即可.
【详解】(1)解:(人).
.
答:喜爱B类研学项目有8人,C类研学项目所在扇形的圆心角的度数为.
(2)喜爱D类研学项目的4名学生分别记为男1,男2,女1,女2,列表如下:
第2位第1位 男1 男2 女1 女2
男1 男1男2 男1女1 男1女2
男2 男2男1 男2女1 男2女2
女1 女1男1 女1男2 女1女2
女2 女2男1 女2男2 女2女1
由表可知,抽选2名学生共有12种等可能结果,抽中一名男生和一名女生(记作事件M)共8种可能.
.
答:抽中一名男生和一名女生的概率为.
35.(2024·四川达州)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:
等级
分数段
频数 m
请根据表中提供的信息.解答下列问题:
(1)此次调查共抽取了______名选手,______,______;
(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;
(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.
【答案】(1),,
(2)
(3)
【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;
(1)根据等级的人数除以占比得出总人数,进而求得的值;
(2)根据等级的占比乘以,即可求解;
(3)设三个项目的冠军分别为,根据列表法求概率,即可求解.
【详解】(1)解:依题意,名选手,,
∴
故答案为:,,.
(2)扇形统计图中,等级所对应的扇形圆心角度数是,
故答案为:.
(3)解:设三个项目的冠军分别为,列表如下,
共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,
∴恰好抽到马拉松和欢乐跑冠军的概率为
36.(2023·山东青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.
【答案】
【分析】画树状图展示所有6种等可能的结果,再找出抽取两本书中有《九章算术》的结果数,然后根据概率公式计算.
【详解】解:画树状图为:
共有种等可能的结果,其中抽取两本书中有《九章算术》的结果数为种,
所以抽取两本书中有《九章算术》的概率为
37.(2023·山东泰安)2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京召开.为激励青少年争做党的事业接班人,某市团市委在党史馆组织了“红心永向党”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.
请根据相关信息解答下列问题:
(1)本次竞赛共有______名选手获奖,扇形统计图中扇形C的圆心角度数是______度;
(2)补全条形统计图;
(3)若该党史馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.
【答案】(1)200,108
(2)见解析
(3)
【分析】(1)用A级的人数除以其人数占比即可求出获奖选手的总数,进而求出B级的人数,由此即可求出C级的人数,再用360度乘以C级的人数占比即可得到答案;
(2)求出B级的人数,然后补全统计图即可;
(3)先列出表格得到所有等可能性的结果数,再找到符合题意得结果数,最后依据概率计算公式求解即可.
【详解】(1)解:名,
∴本次竞赛共有200名选手获奖,
∴C级的人数为名,
∴扇形统计图中扇形C的圆心角度数是度,
故答案为:200,108;
(2)解:B级的人数为名,
补全统计图如下:
(3)解:设这三个出口分别用E、F、G表示,列表如下:
E F G
E (E,E) (F,E) (G,E)
F (E,F) (F,F) (G,F)
G (E,G) (F,G) (G,G)
由表格可知一共有9种等可能性的结果数,其中参赛选手小丽和小颖由馆内恰好从同一出口走出的结果数有3种,
∴参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.
38.(2023·湖北武汉)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间(单位:)作为样本,将收集的数据整理后分为五个组别,其中A组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.
各组劳动时间的频数分布表
组别 时间 频数
5
20
15
8
各组劳动时间的扇形统计图
请根据以上信息解答下列问题.
(1)A组数据的众数是________;
(2)本次调查的样本容量是________,B组所在扇形的圆心角的大小是________;
(3)若该校有名学生,估计该校学生劳动时间超过的人数.
【答案】(1)
(2)60,
(3)人
【分析】(1)根据众数是一组数据中出现次数最多的数据进行求解即可;
(2)利用D组的频数除以对应的百分比即可得到样本容量,利用样本容量减去A、C、D、E组的频数得到B组的频数,再用乘以B组占样本的百分比即可得到B组所在扇形的圆心角的大小;
(3)用该校所有学生数乘以样本中劳动时间超过的人数的占比即可估计该校学生劳动时间超过的人数.
【详解】(1)解:∵A组的数据为:0.5,0.4,0.4,0.4,0.3,共有5个数据,出现次数最多的是0.4,共出现了3次,
∴A组数据的众数是;
故答案为:0.4
(2)由题意可得,本次调查的样本容量是,
由题意得,
∴B组所在扇形的圆心角的大小是,
故答案为:60,
(3)解:(人).
答:该校学生劳动时间超过的大约有860人.
39.(2024·西藏)为了纪念西藏民主改革65周年,弘扬爱国主义精神,学校举办了“感悟历史奇迹,担当时代使命”的历史知识竞赛活动.从七、八年级中各随机抽取了10名学生的竞赛成绩(单位:分)如下:
七年级:80 96 82 92 89 84 73 90 89 97
八年级:94 82 95 94 85 89 92 79 98 93
请根据以上信息,解答下列问题:
(1)七年级这10名学生成绩的中位数是________;八年级这10名学生成绩的众数是________;
(2)若成绩90分以上(含90分)定为优秀等次,请估计八年级400名学生中有多少名学生能达到优秀等次;
(3)根据本次竞赛成绩,七、八年级各推荐了两名学生,学校准备再从这四名学生中随机抽取两人参加市级竞赛,请用列表或画树状图的方法求抽到一名七年级学生和一名八年级学生的概率.
【答案】(1);94
(2)估计八年级400名学生中有名学生能达到优秀等次
(3)
【分析】(1)根据中位数和众数的定义求解即可;
(2)用总人数乘以样本中优秀等次人数所占比例即可得解;
(3)列表得出所有等可能的结果数,再从中找到符合条件的结果数,然后再用概率公式求解即可.
【详解】(1)解:将七年级这10名学生成绩按从小到大排列为:73,80,82,84,89,89,90,92,96,97,处在中间的两个数为89,89,故中位数为;
八年级这10名学生成绩出现次数最多的是94,故中位数为94;
(2)解:(名),
故估计八年级400名学生中有名学生能达到优秀等次;
(3)解:令七年级的两名学生为、,八年级的两名学生为、,
列表得:
由表格可得,共有种等可能出现的结果,其中抽到一名七年级学生和一名八年级学生的情况有种,
故抽到一名七年级学生和一名八年级学生的概率为.
40.(2024·海南)根据以下调查报告解决问题.
调查主题 学校八年级学生视力健康情况
背景介绍 学生视力健康问题引起社会广泛关注.某学习小组为了解本校八年级学生视力情况,随机收集部分学生《视力筛查》数据.
调查结果
八年级学生右眼视力领数分布表
右眼视力 频数
3
24
18
12
9
9
15
合计 90
建议:……
(说明:以上仅展示部分报告内容).
(1)本次调查活动采用的调查方式是________(填写“普查”或“抽样调查”):
(2)视力在“”是视力“最佳矫正区”,该范围的数据为:,这组数据的中位数是________;
(3)视力低于属于视力不良,该校八年级学生有600人,估计该校八年级右眼视力不良的学生约为_______人;
(4)视力在“”范围有两位男生和一位女生,从中随机抽取两位学生采访,恰好抽到两位男生的概率是________;
(5)请为做好近视防控提一条合理的建议.
【答案】(1)抽样调查;
(2);
(3);
(4);
(5)建议学校加强电子产品进校园及使用的管控.
【分析】(1)根据普查和抽样调查的区别即可判断;
(2)根据中位数的定义即可求解;
(3)根据600乘以视力低于的的人数所占的百分比即可求解;
(4)根据题意画出树状图,再根据概率公式求解即可;
(5)根据学生近视程度较为严重,提出合理化建议即可.
本题考查了条形统计图和频数分布表,样本估计总体,中位数的定义,简单概率公式计算等知识,掌握相关知识是解题的关键.
【详解】(1)解:由题意可知,本次调查采用的调查方式为抽样调查,
故答案为:抽样调查;
(2)解:把9个数据按从小到大的顺序排列为:,排在第5位的数是,
∴这组数据的中位数是,
故答案为:;
(3)解:调查数据中,视力低于的人数有:(人),
∴估计该校八年级右眼视力不良的学生约为:
(人)
故答案为:;
(4)解:把两个男生标记为男1,男2,画树状图如下:
共有6种等可能情况,其中恰好抽到两位男生的情况有2种,
∴恰好抽到两位男生的概率是:,
故答案为:;
(5)解:由表中数据说明该校学生近视程度较严重,建议学校加强电子产品进校园及使用的管控.
41.(2024·江苏南通)南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.
(1)甲在2号出入口开展志愿服务活动的概率为______;
(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.
【答案】(1)
(2)
【分析】题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果数m,再找出某事件所占有的可能数n,然后根据概率的概念即可得到这个事件的概率.
(1)直接利用概率公式计算可得;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式可得答案.
【详解】(1)解:∵有标识为1、2、3、4的四个出入口,
∴甲在2号出入口开展志愿服务活动的概率为,
故答案为:;
(2)解:画树状图如下:
共有16种等可能结果,其中甲、乙两人在同一出入口开展志愿服务活动有4种结果,
∴甲、乙两人在同一出入口开展志愿服务活动的概率为.
42.(2024·山东东营)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,东营市某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间分成五档:A档:;B档:;C档:;D档:;E档:).调查的八年级男生、女生劳动时间的不完整统计图如下:
根据以上信息,回答下列问题:
(1)本次调查中,共调查了_______名学生,补全条形统计图;
(2)调查的男生劳动时间在C档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.
(3)学校为了提高学生的劳动意识,现从E档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.
【答案】(1)50,见详解
(2)2.5
(3)
【分析】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,中位数的定义,熟练掌握各知识点是解题的关键.
(1)运用D档人数除以D的百分比,得出调查的学生总数,再运用总数乘上档的百分比,即可作答.
(2)根据中位数的定义,排序后位于中间位置的数为中位数,据此即可作答.
(3)依题意,得出档有名男学生,有名女学生,运用列表法得共有12种等可能的结果,再运用概率公式列式计算,即可作答.
【详解】(1)解:依题意,(名)
∴本次调查中,共调查了50名学生;
则(名)
∴(名)
则档有名男学生,有名女学生,
补全条形统计图如图所示:
(2)解:依题意,
(名)
本次调查的男学生的总人数是23名
∴则调查的全部男生劳动时间的中位数位于第名,
∵
∴第名位于C档
∵调查的男生劳动时间在C档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.
则调查的全部男生劳动时间的中位数为2.5小时,
故答案为2.5;
(3)解:用,表示2名男生,用,表示两名女生,列表如下:
共有12种等可能的结果,其中所选两名学生恰好都是女生的结果有2种,
.
43.(2024·四川雅安)某中学对八年级学生进行了教育质量监测,随机抽取了参加15米折返跑的部分学生成绩(成绩划分为优秀、良好、合格与不合格四个等级),并绘制了不完整的统计图(如图所示).根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)若该校八年级学生有300人,试估计该校八年级学生15米折返跑成绩不合格的人数;
(3)从所抽取的优秀等级的学生A、B、C、D、E中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求恰好抽到A、B两位同学的概率.
【答案】(1)见解析
(2)30人
(3)
【分析】此题考查了列表法与树状图法,用样本估计总体,以及条形统计图,弄清题中的数据是解本题的关键.
(1)根据成绩为良好的人数除以占的百分比求出调查的总人数,进而求出不合格的人数,补全条形统计图即可;
(2)由样本中成绩不合格的百分比估计总体中成绩不合格的百分比,乘以300即可得到结果;
(3)列出得出所有等可能的情况数,找出恰好抽到、两位同学的情况数,即可求出恰好抽到、两位同学的概率.
【详解】(1)解:根据题意得:(人),
∴不合格的为:(人),
补全条形统计图,如图所示:
(2)解:根据题意得:(人),
则该校八年级学生15米折返跑成绩不合格的人数约为30人;
(3)解:列表如下:
A B C D E
A ---
B ---
C ---
D ---
E ---
所有等可能的情况有20种,其中恰好抽到A、B两位同学的情况数为2种,
则P(恰好抽到A、B两位同学).
44.(2024·四川资阳)我国古诗词源远流长.某校以“赏诗词之美、寻文化之根、铸民族之魂”为主题,组织学生开展了古诗词知识竞赛活动.为了解学生对古诗词的掌握情况,该校随机抽取了部分学生的竞赛成绩,将成绩分为A,B,C,D四个等级,并绘制成如图所示的两幅不完整的统计图:
(1)本次共抽取了________名学生的竞赛成绩,并补全条形统计图;
(2)若该校共有2000人参加本次竞赛活动,估计竞赛成绩为B等级的学生人数;
(3)学校在竞赛成绩为A等级中的甲、乙、丙、丁这4名学生里,随机选取2人参加经典诵读活动,用画树状图或列表法求出甲、乙两人中恰好有1人被选中的概率.
【答案】(1)400,见解析
(2)800名
(3)见解析,
【分析】(1)利用C等级的人数除以其所占的百分比求得样本总数,再利用样本总人数减去其他等级的人数求得D等级的人数,再补全条形统计图即可;
(2)利用B等级的人数除以样本总数求得其所占的百分比,再乘除全校人数即可求解;
(3)画树状图可得共有12种等可能的结果,其中甲、乙两人中恰好有1人被选中有8种等可能的结果,再利用概率公式求解即可.
【详解】(1)解:由图可得,(名),
∴D等级的人数为:(名),
补全条形统计图如下所示:
故答案为:400;
(2)解:(名),
答:估计竞赛成绩为B等级的学生人数为800名;
(3)解:画树状图如下:
共有12种等可能的结果,其中甲、乙两人中恰好有1人被选中有8种等可能的结果,
∴甲、乙两人中恰好有1人被选中的概率为.
45.(2024·山东济宁)为做好青少年安全教育工作,某校开展了主题为“珍爱生命,牢记安全”的知识竞赛(共20题,每题5分,满分100分).该校从学生成绩都不低于80分的八年级(1)班和(3)班中,各随机抽取了20名学生成绩进行整理,绘制了不完整的统计表、条形统计图及分析表.
【收集数据】
八年级(1)班20名学生成绩:85,95,100,90,90,80,85,90,80,100,80,85,95,90,95,95,95,95,100,95.
八年级(3)班20名学生成绩:90,80,100,95,90,85,85,100,85,95,85,90,90,95,90,90,95,90,95,95.
【描述数据】
八年级(1)班20名学生成绩统计表
分数 80 85 90 95 100
人数 3 3 a b 3
【分析数据】
八年级(1)班和(3)班20名学生成绩分析表
统计量 班级 平均数 中位数 众数 方差
八年级(1)班 95 41.5
八年级(3)班 91 90 26.5
【应用数据】
根据以上信息,回答下列问题.
(1)请补全条形统计图:
(2)填空:______,______;
(3)你认为哪个班级的成绩更好一些?请说明理由;
(4)从上面5名得100分的学生中,随机抽取2名学生参加市级知识竞赛.请用列表法或画树状图法求所抽取的2名学生恰好在同一个班级的概率.
【答案】(1)见详解
(2)91,92.5
(3)八年级(1)班成绩较好,理由见详解
(4)
【分析】(1)由八年级(3)班20名学生成绩统计可得90分学生有7人,95分学生有6人,补全条形统即可;
(2)由八年级(1)班20名学生成绩统计可得,,根据平均数和中位数的定义进行计算即可;
(3)从平均数,中位数和众数综合分析得八年级(1)班成绩较好;
(4)设八年级(1)班的三名100分的学生用A、B、C表示,八年级(3)班的两名100分的学生用X、Y表示,用列表法表示出所有可能结果,再从中找出2名学生恰好在同一个班级的结果数,再根据概率的计算公式进行计算即可.
【详解】(1)解:由八年级(3)班20名学生成绩统计可得90分学生有7人,95分学生有6人,补全条形统计图如图所示:
(2)解:由八年级(1)班20名学生成绩统计可得,,
∴,
一共20名学生,中位数应该为第10名与第11名的平均数,
.
(3)解:八年级(1)班和八年级(3)班的平均成绩相同,但八年级(1)班的中位数和众数都比八年级(3)班高,即八年级(1)班高分段人数较多.因此八年级(1)班成绩较好.
(4)解:设八年级(1)班的三名100分的学生用A、B、C表示.八年级(3)班的两名100分的学生用X、Y表示,则随机抽两名学生的所有情况如下:
(1)班 (3)班 A B C X Y
A AB AC AX AY
B BA BC BX BY
C CA CB CX CY
X XA XB XC XY
Y YA YB YC YX
一共有20种情况.其中两名同学在同一个班级的有共8种,
∴所抽取的2名学生恰好在同一个班级的概率为: .
46.(2024·内蒙古呼
展开更多......
收起↑