6.3复合判断的演绎推理方法课件(共41张PPT)高中思想政治统编版选择性必修3 逻辑与思维

资源下载
  1. 二一教育资源

6.3复合判断的演绎推理方法课件(共41张PPT)高中思想政治统编版选择性必修3 逻辑与思维

资源简介

(共41张PPT)
6.3 复合判断的演绎推理方法
第六课 掌握演绎推理方法
探究与分享【P51】
在一次班会上,老师问大家成功的心态应该是怎样的。小郑说:“要不断地努力奋斗,活到老学到老。”小刘说:“要保持知足的心态,肯定自己走过的每一步。”老师说:“你们的观点都是对的,结合起来会更好:成功的心态既要不断努力,也要知足常乐。”
小郑:成功的心态要不断地努力奋斗。
小刘:成功的心态要保持知足的心态。
老师:成功的心态既要不断努力,也要知足常乐。
联言判断
1.指出材料中的判断和推理。
2.老师的话是否正确,为什么?
性质判断
性质判断


结论
这是
一个
联言
推理
2、联言推理的含义:
联言推理是依据联言判断的逻辑性质进行的推理
一、联言推理及其方法
p q P并且q
真 真 真
真 假 假
假 真 假
假 假 假
从联言判断的逻辑性质说,当且仅当,组成它的各个联言支都是真的,这个联言判断才是真的。
如果有一个联言支是假的,这个联言判断就是假的。
1、联言推理的必要性:
认识事物的过程中,有时需要将分别存在的对象情况综合成比较全面的认识,有时又需要将对象的某种情况从众多共存的情况中分割出来,实现认识由肯定总体到突出重点的转化。这就需要运用联言推理。
全真才真,一假则假
周恩来是中国无产阶级的革命家,
周恩来是中国无产阶级的政治家,
所以,周恩来是中国无产阶级的
革命家、政治家。
实现中国梦需要我的努力,
实现中国梦需要你的努力,
实现中国梦需要他的努力,
所以,实现中国梦需要你、
我、他的共同努力。
德之不修,学之不讲,闻义不能徙,不善不能改,是吾忧也。
所以,德之不修,是吾之忧也。
警察职业是神圣的,光荣的,危险的
所以,警察的职业是神圣的。
所以,警察的职业是光荣的。
所以,警察的职业是危险的。
左边两组、右边两组推理各有什么共同点?
前提
结论
前提
结论
前提
结论
前提
结论
联言支1真
联言支2真
联言判断真
联言支1真
联言支2真
联言支3真
联言判断真
联言判断的有效推理结构:
【合成式】
由全部支判断真
推出联言判断真
的联言推理形式。
联言判断真
联言支真
联言判断真
联言支真
联言判断的有效推理结构:
【分解式】
由联言判断真
推出一个支判断真
的联言推理形式。
联言支真
联言支真
毛泽东是伟大的思想家
毛泽东是伟大的政治家
毛泽东是伟大的思想家、政治家
合成式公式:
p (真)
q (真)
p并且q (真)
个别
整体
规则:从联言判断和它的联言支的真假关系来说,如果所有的联言支都是真的,联言判断就是真的。如果联言推理的前提分别断定了各个联言支是真的,它的结论就能够断定由这些联言支所构成的联言判断是真的。
3、联言推理的有效结构
注意:这个联言推理,其前提所断定的对象情况分别存在,而在结论中断定它们同时存在。
p q p∧q
真 真 真
真 假 假
假 真 假
假 假 假
全真才真,一假则假
(1)合成式
规则:从联言判断和它的联言支的真假关系来说,如果一个联言判断是真的,它的联言支就都是真的。联言推理的前提断定联言判断是真的,它的结论就能够断定这个联言判断的联言支是真的。
警察的职业是神圣的、光荣的、危险的
所以,警察的职业是神圣的。
所以,警察的职业是光荣的。
所以,警察的职业是危险的。
分解式公式:
p并且q (真)
p(q) (真)
个别
整体
注意:这个联言推理,由前提所断定对象的几种情况同时存在,而在结论中断定其中的个别情况存在。
p q p∧q
真 真 真
真 假 假
假 真 假
假 假 假
全真才真,一假则假
(2)分解式
德之不修,学之不讲,闻义不能徙,不善不能改,是吾忧也。
所以,德之不修,是吾忧也。
【P52 示例评析2】
这个联言推理,由前提所断定对象的几种情况同时存在,而在结论中断定其中的个别情况存在。


不去培养品德,不去讲习学问,听到义在那里却不能去追随,有缺点而不能改正,这些都是我所忧虑的。
探究与分享 P52
传说,一位农夫曾被恶人诬告,被判了死罪。按当地的习俗,即将被处死的人可以用抓阄儿来碰碰运气。抓到“死”阄儿,必死无疑;抓到“生”阄儿,可以赦免。恶人不想让农夫活下来,买通制阄儿的人,把两个阄儿都制成了“死”阄儿。农夫的一个朋友得知消息后,悄悄告诉了农夫。到了抓阄儿的那天,农夫随便抓出一阄儿,放进嘴里吞了下去 他请求行刑的官吏查看剩下的阄儿......
农夫的智慧表现在哪里?
请你运用推理知识,说说农夫的推理过程。
抓阄定生死
农夫的智慧表现在哪里?
由于规则是抓“生”“死”两个阄中的一个。面对两个“死”阄,吞了一个,剩下的是“死”阄。
在这种情况下,要么确认农夫吞的是“生”阄,要么就要制阄人承认破坏规则。而破坏规则是制阄人怎么也不会承认的。
农夫的推理过程
农夫要么抓到“生”阄,要么抓到“死”阄,
现在剩下的是“死”阄,
所以,农夫抓到的不是“死”阄,而是“生”阄。
不相容选言判断
选言
推理
前提
结论
肯定一部分选言支
否定另一部分选言支
3、种类:相容选言推理和不相容选言推理。
二、选言推理及其方法
1、选言推理的必要性
事物存在的可能情况多种多样,人们不可能对其中的每种情况都通过实践来认识,这就需要运用选言推理,在事物诸多可能情况中作出某种选择。
2、选言推理的含义
选言推理是依据选言判断的逻辑性质进行的推理。
相容选言:一真即真,全假才假。(或者…或者)
不相容选言:有且只有一个真才真,全真全假皆假。(要么…要么)
一个语句错误,或是不合语法,或是不合实际,或是不合逻辑,
这个语句是合语法的,
所以,这个语句错误,或是不合
实际,或是不合逻辑的。
这个推理的结构是正确的,
因为第一个前提是相容选言判断,它断定了“语句错误”的三种可能情况,这三种情况是可以同时存在的。
第二个前提否定了“语法问题”,
结论就能够肯定是不合实际或者是不合逻辑的问题了。
否定其中一个
结论肯定剩下的
相容选言推理:否定了一个选言支,就可以肯定剩下的选言支,因为不能全假
一个语句错误,或是不合语法,或是不合实际,或是不合逻辑,
这个语句是不合语法的,
所以,这个语句是不合实际和不
合逻辑的。
以下推理的结构是否正确吗,为什么?
探究分享
肯定其中一个
结论否定剩下的
这个推理的结构是不正确的,
因为,不合语法、不合实际、不合逻辑,这几种情况是相容的,是可以同时存在的,(可以全真)
第二个前提肯定了“语法问题”,
因此,不能由肯定了判断前提中一部分选言支,就否定剩下的另一部分选言支。
相容选言推理:肯定了一个选言支,就不可否定剩下的选言支,因为可以同真
4.相容选言推理
是前提中有一个相容的选言判断的选言推理。
规则:一个相容的选言判断,断定其选言支中至少有一个是真的。
正确的推理结构:一个相容的选言推理的正确的推理结构,只能是否定选言判断前提中的一部分选言支,结论肯定剩下的另一部分选言支。
(1)有效式:
(2)无效式:
错误的推理结构:如果肯定了选言判断前提中一部分选言支,结论就不能必然地否定剩下的另一部分选言支。
否定肯定式√
肯定否定式ⅹ
例:同学们可以加入篮球或排球小组
张宁没有加入篮球小组
所以,张宁加入了排球小组。
例:该案作案人或是甲或是乙
已查明该案作案人是甲
所以,该案作案人不是乙。
P53 示例评析
一个语句错误,或是不合语法,或是不合实际,或是不合逻辑,
这个语句是合语法的,
所以,这个语句错误,或是不合实际,或是不合逻辑的。
这个推理的第一个前提是相容选言判断,它断定了“语句错误”的三种可能情况,这三种情况是可以同时存在的。第二个前提否定了“语法问题”,结论就能够肯定是不合实际或者是不合逻辑的问题了。
相容选言推理的否定肯定式:
P或者q P或者q
非p 非q
q P

(否定其中一个)
(结论肯定剩下的)
探究分享 P53
一个语句错误,或是不合语法,或是不合实际,或是不合逻辑,
这个语句是不合语法的,
所以,这个语句是合乎实际和合乎逻辑的
这个推理的结构是否正确吗,为什么?
这个推理的结构是不正确的,因为,不合语法、不合实际、是不合逻辑,这几种情况是相容的,是可以同时存在的,因此,不能由肯定了判断前提中一部分选言支,就否定剩下的另一部分选言支。
肯定否定式是无效形式。
(肯定其中一个)
(结论?)
①肯定否定式:如果肯定了选言判断前提中的一部分选言支,结论就可以否定剩下的另一部分选言支。
②否定肯定式:如果否定了选言判断前提中的一部分选言支,结论就可以肯定剩下的另一部分选言支。
选言支有且只能有一个是真的
公式:
要么p,要么q 要么p,要么q
P q
非q 非p
公式:
要么p,要么q 要么P,要么q
非p 非q
q p
由于不相容的选言判断的选言支不可能都真。
5、不相容选言推理
有效式:(正确的推理结构)
例1:某个实数,要么它是有理数,要么它是无理数,
这个实数是有理数,
所以,这个实数不是无理数。
示例评析 P54
这个推理的第一个前提是不相容的选言判断,它断定了实数的两种性质,任何实数不能同时具有这两种性质。第二个前提肯定了其中一种性质,结论必然要否定另一种性质。
肯定否定式
例2:要么社会存在决定人们的意识,要么人们的意识决定社会存在,
社会发展史充分证明绝不是人们的意识决定社会存在,
所以,社会存在决定人们的意识。
在“社会存在”和“人们意识”谁决定谁的问题上,第一个前提是不相容的选言判断,断定它们不可能同时存在。第二个前提否定了其中一个可能性,结论必然肯定另一种可能性。
否定肯定式
标准 根据选言前提各选言支之间的关系是否为相容关系
相容的选言推理 否定一部分选言支,就要肯定另一部分选言支(否定肯定式)
肯定一部分选言支,不能否定另一部分选言支(无效式)
不相容的选言推理 否定一部分选言支,就要肯定另一部分选言支(否定肯定式)
肯定一部分选言支,就要否定另一部分选言支(肯定否定式)
归纳:选言推理的方法——相容和不相容:
【探究与分享:P54】
张经理对李某说:“不做完这项工作,你就不能离职。”过了几天,李某把自己的工作任务完成了,要求离职,张经理仍不同意。李某认为张经理失信,张经理认为李某曲解了他的要求。
李某是否曲解了张经理的要求?谈谈你的看法。
李某曲解了张经理的要求。
可以把张经理的话理解成充分条件假言判断,即如果不做完这项工作,就不能离职。
因为充分条件假言判断的逻辑含义是“有之必然”,即有前件一定有后件,因而只有在前件真而后件假时,充分条件假言判断才是假的,其余情况都是真的。
李某做完了这项工作,张经理仍不同意李某离职,就意味着前件假而后件真,在这种情况下,充分条件假言判断是真的,即张经理没有失信。
前件假时,后件怎么样没有断定。
三、假言推理及其方法
1、假言推理的必要性:
在人们的认识活动中,如果把握了事物之间的条件关系,并且确认了相关事实,就可以运用假言推理推断未知的事物情况。
2、假言推理的含义:
依据假言判断的逻辑性质进行的推理。
3、假言推理的分类:
假言判断有三种类型,相应地,假言推理也分为充分条件假言推理、必要条件假言推理和充分必要条件假言推理。
充分条件:有前必有后,无前后不定。
必要条件:无前必无后,有前后不定。
充分必要条件:有前必有后,无前必无后。
假言判断的常用联结项都有哪些
①充分条件假言判断的常用联结项是:“如果……那么……”“只要……就……”;
②必要条件假言判断的常用联结项是:“只有……才……”;
③充要条件假言判断的常用联结项是:“……当且仅当……”。
含义:充分条件假言推理是大前提为充分条件假言判断,小前提和结论为直言判断(即性质判断)的假言推理。
充分条件假言判断所断定的前件和后件的关系是:
前件真,后件就一定真。反过来看,后件假,前件就一定假。
(有前必有后,无后必无前)
(1)推理依据:
4.充分条件假言推理
p q p→q
真 真 真
真 假 假
假 真 真
假 假 真
小芳与小玉相约:“如果明天上午不下雨,8点我们在教学楼前会面,然后一起去图书超市买书。”第二天上午,下起了小雨。小玉想,既然下雨了,小芳就不会去图书超市买书了。于是,小玉去小芳的宿舍,想约小芳一起去图书馆查资料。谁知小芳仍然去了图书超市。两个人见面后,小玉责备小芳食言,小芳却说小玉的推论不合逻辑。
【探究分享】
材料中包含着两个充分条件假言推理,请找出来。
如果明天上午不下雨,她们就一起去图书超市买书,
第二天上午没有下雨,
所以,她们一定会去图书超市买书。
点评:
如果明天上午不下雨,她们就一起去图书超市买书,
第二天上午下雨了,
所以,她们就一定不去图书超市买书。
上述两个推理的结论能否必然得出?
肯定了前件
充分条件:有前必有后,无前未必无后。
肯定了后件
肯定前件,就能肯定后件。推理结构正确,推理的结论能必然得出
否定前件,不能否定后件。推理结构错误,推理的结论不能必然得出
否定了前件
否定了后件
(2)有效式
①肯定前件式。
如果肯定了假言判断的前件,结论就可以肯定假言判断的后件;
②否定后件式。
如果否定了假言判断的后件,结论就可以否定假言判断的前件。
充分条件假言推理的肯定前件式:
如果P,那么Q
P
Q
充分条件假言推理的否定后件式:
如果P,那么Q
非Q
非P
例:如果下雨,春游活动就延后,
天下雨了,
所以,春游活动延后。
例:如果下雨,春游活动就延后,
春游活动没有延迟,
所以,没有下雨。
【充分条件假言推理口诀】
肯定前件,就能肯定后件;
否定后件,就能否定前件。
⑷无效式
①否定前件式。
如果否定了假言判断的前件,结论不能否定假言判断的后件;
②肯定后件式。
如果肯定了假言判断的后件,结论不能肯定假言判断的前件。
充分条件假言推理的否定前件式:
如果P,那么Q
非P
非Q
充分条件假言推理的肯定后件式:
如果P,那么Q
Q
P
×
×
【充分条件假言推理口诀】
肯定前件,可以肯定后件;否定后件,可以否定前件。
否定前件,不能否定后件;肯定后件,不能肯定前件。
【充分条件假言推理口诀】
否定前件,不能否定后件;
肯定后件,不能肯定前件。
如果明天上午不下雨,她们就一起去图书超市买书。
第二天上午没下雨,
所以,她们一定会去图书超市买书。

如果明天上午不下雨,她们就一起去图书超市买书。
第二天上午下雨了,
所以,她们就一定不去图书超市买书。
×
如果明天上午不下雨,她们就一起去图书超市买书。
她们没有去图书超市买书,
所以,第二天上午下雨了。

有效式:肯定前件式
无效式:否定前件式
有效式:否定后件式
如果明天上午不下雨,她们就一起去图书超市买书。
她们一起去图书超市买书了,
所以,第二天上午一定没下雨。
无效式:肯定后件式
×
充分条件假言判断:有之必然,即有前件一定有后件;没后件一定没前件
没有约定出现下雨这种情况,她们会怎样
她们去图书超市买书需要一些条件,不下雨只是其中一个充分条件,不是必然条件,也就是说,不下雨一定会去,但去也可以是在下雨天。不下雨不是必要条件只是充分条件。
主治医生看了看患者甲的体检报告说:“除非做手术,否则你的病好不了。”
患者甲说:“您的意思是,不做手术,我的病就不能治愈吗 ”
主治医生说:“是这样的。”
【探究分享】
上述对话中包含着一个必要条件假言推理,请找出来。
只有患者甲接受做手术,他的疾病才能治愈,
患者甲没有接受做手术,
所以,患者甲的疾病不可能治愈。
点评:
否定了前件
否定了后件
推理结构合理,结论正确
必要条件:无前必无后,有前未必无后。
含义:必要条件假言推理是大前提为必要条件假言判断,小前提和结论为直言判断(即性质判断)的假言推理。
必要条件假言判断所断定的前件和后件的关系是:
前件假,后件就一定假。反过来看,后件真,前件就一定真。
(无前必无后,有后必有前)
(1)推理依据:
4.必要条件假言推理:
p q p←q
真 真 真
真 假 真
假 真 假
假 假 真
⑶有效式
①否定前件式。
如果否定了必要条件假言判断的前件,结论就可以否定必要条件假言判断的后件;
必要条件假言推理的否定前件式:
只有P,才Q
非P
非Q
②肯定后件式。
如果肯定了必要条件假言判断的后件,结论就可以肯定必要条件假言判断的前件。
必要条件假言推理的肯定后件式:
只有P,才Q
Q
P
例如:
只有遵循规律,才能取得成功,不遵循规律,
所以,不能取得成功。
例如:
只有遵循规律,才能取得成功,
取得了成功,
所以,遵循了规律。
⑷无效式
①肯定前件式。
如果肯定了必要条件假言判断的前件,结论不能肯定假言判断的后件;
②否定后件式。
如果否定了必要条件假言判断的后件,结论不能否定必要条件假言判断的前件。
×
×
必要条件假言推理的肯定前件式:
只有P,才Q
P
Q
必要条件假言推理的否定后件式:
只有P,才Q
非Q
非P
【必要条件假言推理口诀】
否定前件,就能否定后件;肯定后件,就能肯定前件。
肯定前件,不能肯定后件;否定后件,不能否定前件。
只有患者甲接受了做手术,他的疾病才能治愈。
患者甲接受了做手术,
结论:他的疾病能治愈。
只有患者甲接受了做手术,他的疾病才能治愈。
他的疾病没有治愈,
结论:患者甲没有接受做手术。
只有患者甲接受了做手术,他的疾病才能治愈。
他的疾病治愈了,
结论:患者甲接受了做手术。
只有患者甲接受了做手术,他的疾病才能治愈。
患者甲没有接受做手术,
结论:他的疾病没有治愈。
必要条件假言判断前后件的关系:
前件假,后件一定假;后件真,前件一定真。即无之必不然。
无效推理:肯定前件式
无效推理:否定后件式
有效推理:否定前件式
有效推理:肯定后件式
必要条件:无前必无后,有前未必无后
如果“三角形有一个角是90°,当且仅当,这是一个直角三角形”的前提成立,再加上以下所给的前提,其推理是否成立,为什么?
1.假设“这个三角形没有一个角是90°”能否必然得出“这个三角形不是直角三角形”的结论?
2.假设“这个三角形不是直角三角形”能否必然得出“这个三角形没有一个角是90°”的结论?
3.假设“这个三角形是直角三角形”能否必然得出“这个三角形有一个角是90°”的结论?
4.假设“这个三角形没有一个角是90°”能否必然得出“这个三角形是直角三角形”的结论?
能,否定前件,就能否定后件。
能,否定后件,就能否定前件。
能,肯定后件,就能肯定前件。
不能,否定前件肯定后件是错误的。
P56-57探究与分享
含义:充分必要条件假言推理是一个前提为充分必要条件假言判断,另一个前提和结论为直言判断的假言推理。
充分必要条件假言判断所断定的前件和后件的关系是:前件真,后件就一定真;
前件假,后件就一定假。
反过来看, 后件真,前件就一定真;
后件假,前件就一定假。
(同真,同假)
(1)推理依据:
5.充分必要条件假言推理
p q p q
真 真 真
真 假 假
假 真 假
假 假 真
肯定前件式 (有前必有后) 肯定了充分必要条件假言判断的前件, 结论就可以肯定充分必要条件假言判断的后件
有效式
肯定后件式 (有后必有前) 肯定了充分必要条件假言判断的后件, 结论就可以肯定充分必要条件假言判断的前件 否定前件式 (无前必无后) 否定了充分必要条件假言判断的前件, 结论就可以否定充分必要条件假言判断的后件 否定后件式 (无后必无前) 否定了充分必要条件假言判断的后件, 结论就可以否定充分必要条件假言判断的前件 (2)充要条件假言推理有效推理结构:
如果三角形有一个角是90度,当且仅当,这是一个直角三角形。
这个三角形没有一个角是90度,
所以,这个三角形不是直角三角形。
如果三角形有一个角是90度,当且仅当,这是一个直角三角形。
这个三角形不是直角三角形,
所以,这个三角形没有一个角是90度。
如果三角形有一个角是90度,当且仅当,这是一个直角三角形。
这个三角形是直角三角形,
所以,这个三角形有一个角是90度。
如果三角形有一个角是90度,当且仅当,这是一个直角三角形。
这个三角形有一个角是90度,
所以,这个三角形是直角三角形。
肯定前件式
否定前件式
肯定后件式
否定后件式
充要条件假言判断的断定的前件和后件的关系:
前件真,后件一定真;前件假,后件一定假。
后件真,前件一定真;后件假,前件一定假。
肯定前件式 否定前件式 肯定后件式 否定后件式
充分条件 假言推理 √ √
必要条件 假言推理 √ √
充分必要条件 假言推理 √ √ √ √
【总结】假言推理的正确推理结构(有效式)
事物情况之间的条件联系体现着事物发生、发展的内在规律。
依据正确反映事物之间条件联系的假言判断进行假言推理,人们可以推断出新的情况,可以预见事物的发展方向,为进一步认识事物的本质和规律创造必要的前提。
6. 运用假言推理的意义
7.演绎推理的要求 (保真条件)
①前提真实; ②遵循演绎推理规则。
演绎推理是必然推理,是从真前提保证推出真结论的推理。
这种“保证”是在遵循演绎推理的规则下得以实现的。
复合判断的演绎
推理方法
联言推理
选言推理
假言推理
必要性和含义
推理的方法——合成式、分解式
相容的选言推理的否定肯定式
充分条件假言推理的规则——有效式、无效式
必要条件假言推理的规则——有效式、无效式
不相容的选言推理的肯定否定式和否定肯定式
充分必要条件假言推理规则——有效式
知识体系
归纳总结★联言、选言推理的常用答题语言:
大题答题语言
联言推理 合成式 ①逻辑性质:从联言判断和它的联言支的真假关系来说,如果所有的联言支都是真的,联言判断就是真的。
②如果联言推理的前提分别断定了各个联言支是真的,它的结论就能断定由这些联言支所构成的联言判断是真的。
分解式 ①从联言判断和它的联言支的真假关系来说,如果一个联言判断是真的,它的联言支都是真的。
②如果联言推理的前提断定联言判断是真的,它的结论就能断定这个联言判断的联言支是真的。
选言推理 相容 ①一个相容的选言判断,选言支中至少有一个是真的。
②因此,一个相容的选言推理的正确的推理结构,只能是否定选言判断前提中的一部分选言支,结论肯定剩下的另一部分选言支。
不相容 不相容选言判断的选言支不可能都真。所以,在进行不相容的选言推理时,如果肯定了选言判断前提中的一部分选言支,结论就可以否定剩下的另一部分选言支,反之亦然(如果肯定了……,结论就可以否定剩下的……)
知识小结:复合判断的演绎推理
归纳总结假言推理的常用答题语言★:
★大题答题语言
充分条件 假言推理 ①逻辑性质:充分条件假言判断所断定的前件和后件的关系是:前件真,后件就一定真。反过来看,后件假,前件就一定假。
②如果肯定了充分条件假言判断的前件,结论就可以肯定后件。
如果否定了充分条件假言判断的后件,结论就可以否定前件。
必要条件 假言推理 ①必要条件假言判断所断定的前件和后件的关系是:前件假,后件就一定假。反过来看,后件真,前件就一定真。
②如果否定了必要条件假言判断的前件,结论就可以否定后件。如果肯定了充分条件假言判断的后件,结论就可以肯定前件。
充分必要 条件 假言推理 ①充分必要条件假言判断所断定的前件和后件的关系是:
前件真,后件就一定真;前件假,后件就一定假。反过来看,后件真,前件就一定真;后件假,前件就一定假(前件和后件真假保持一致)
②如果肯定了……的前件,结论就可以肯定其后件;
如果肯定了……的后件,结论就可以肯定……前件。
如果否定了……的前件,结论就可以否定……后件;
如果否定了……的后件,结论就可以否定……前件。
知识小结:复合判断的演绎推理
( 2023湖北高考) 2017年,方某在电梯内劝阻一位老人吸烟,两人发生争执,老人因为情绪激动诱发心脏病,倒地死亡。视频记录显示,两人并未发生肢体冲突,老人也一直没有熄灭手里的烟。事后老人家属与方某在派出所就赔偿金额未能达成协议,于是到法院起诉方某,索赔40万元。一审法院认为,方某的行为与老人死亡并无必然因果关系,但考虑“公平原则”,判决方某补偿老人家属1.5万元。
一审判决后,当地媒体对案件进行了报道,随后事件发酵,扩散到全国,引起热议。
丁对戊说:“我觉得方某的行为不但没有错,而且应该鼓励。”
戊说:“我不同意你的观点,方某的行为没错我不反对,但鼓励我认为谈不上。”
丁反驳说:“你既然不同意我的观点,却又承认方某没错,这不是自相矛盾吗?”
运用《逻辑与思维》知识,判断丁戊的对话中谁的话不合逻辑并说明理由。
(结论提前:)丁反驳的话,不合逻辑,戊的话合逻辑。
(①判断类型:)丁对戊说:“我觉得方某的行为不但没有错,而且应该鼓励。”,这是一个联言判断,
(②说规则:)在联言判断中,当且仅当组成它的各个联言支都是真的,这个联言判断才是真的,如果有一个联言支是假的,这个联言判断就是假的,
(③写过程:)戊不同意丁的观点,即认为这个联言判断是假的,戊否定了应该鼓励这个联言支为假,不同意丁观点并没有与承认方某没错产生自相矛盾
(④下结论:)因此丁反驳的话,不合逻辑,戊的话合逻辑。

展开更多......

收起↑

资源预览