资源简介 (共34张PPT)八年级人教版数学上册 第一章 三角形13.3 与三角形有关的角13.3.1第一课时 三角形的内角和定理学习目标2.会运用三角形内角和定理进行计算.(难点)1.会用平行线的性质与平角的定义证明三角形内角和等于180°.(重点)我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.情景导入我们在小学已经知道,任意一个三角形的内角和等于180°.与三角形的形状、大小无关,所以它们的说法都是错误的.思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢 折叠还可以用拼接的方法,你知道怎样操作吗?锐角三角形测量480720600600+480+720=1800(学生运用学科工具—量角器测量演示)剪拼ABC21(小组合作,讨论剪拼方法。各小组代表板演剪拼过程)三角形的三个内角拼到一起恰好构成一个平角.观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?还有其他的拼接方法吗?探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.三角形的内角和定理的证明新知探究追问1:在下图中,∠B 和∠C 分别拼在∠A 的左右,三个角合起来形成一个平角,出现了一条过点A 的直线l,直线l 与边BC 有什么位置关系?直线l 与边BC 平行.BBCCAl追问2:在操作过程中, 我们发现了与边BC 平行的直线l,由此,你又能受到什么启发?你能发现证明“三角形内角和等于180°”的思路吗?通过添加与边BC平行的辅助线l,利用平行线的性质和平角的定义即可证明结论.BBCCAl验证结论:三角形三个内角的和等于180°.求证:∠A+∠B+∠C=180°.已知:△ABC.12证法1:过点A作l∥BC,∴∠B=∠1.(两直线平行,内错角相等)∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.证法2:延长BC到D,过点C作CE∥BA,∴ ∠A=∠1 .(两直线平行,内错角相等)∠B=∠2.(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.CBAED12CBAEDF证法3:过D作DE∥AC,作DF∥AB.∴ ∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴ ∠A=∠EDF.∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°.想一想:同学们还有其他的方法吗?思考:多种方法证明三角形内角和等于180°的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.CAB12345lACB12345lP6mABCDEC24AB3EQDFPGH1BGC24A3EDFH1试一试:同学们按照上图中的辅助线,给出证明步骤?在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.思路总结为了证明三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.作辅助线概念归纳三角形内角和定理的“三个应用”1.已知两个角的度数求第三个角的度数.2.已知一个角的度数求另外两个角度数的和.3.已知三个角的度数关系,求这三个角的度数.三角形的内角和定理的应用新知探究例1 如图,在△ABC中, ∠BAC=40 °, ∠B=75 °,AD是△ABC的角平分线,求∠ADB的度数.ABCD解:由∠BAC=40 °, AD是△ABC的角平分线,得∠BAD= ∠BAC=20 °.在△ABD中,∠ADB=180°-∠B-∠BAD=180°-75°-20°=85°.典例剖析【变式题】如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,∠B=70°,求∠EDC,∠BDC的度数.解:∵∠A=50°,∠B=70°,∴∠ACB=180°-∠A-∠B=60°.∵CD是∠ACB的平分线,∴∠BCD= ∠ACB=30°.∵DE∥BC,∴∠EDC=∠BCD=30°,在△BDC中,∠BDC=180°-∠B-∠BCD=80°.基本图形由三角形的内角和定理易得∠A+∠B=∠C+∠D.由三角形的内角和定理易得∠1+∠2=∠3+∠4.4总结归纳例 3 在△ABC 中, ∠A 的度数是∠B 的度数的3倍,∠C 比∠B 大15°,求∠A,∠B,∠C的度数.解: 设∠B为x°,则∠A为(3x)°,∠C为(x + 15)°, 从而有3x + x +(x + 15)= 180.解得 x = 33.所以 3x = 99 , x + 15 = 48.答: ∠A, ∠B, ∠C的度数分别为99°, 33°, 48°.几何问题借助方程来解. 这是一个重要的数学思想.典例剖析②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是_________三角形 .①在△ABC中,∠A=35°,∠ B=43 °,则∠ C= .③在△ABC中, ∠A= ∠B+10°, ∠C= ∠A + 10°, 则 ∠A= , ∠ B= ,∠ C= .102°直角60°50°70°练一练北.AD北.CB.东E例 4 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向.从B岛看A,C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?三角形的内角和定理在实际问题中的应用新知探究解: ∠CAB= ∠BAD- ∠CAD=80 °-50°=30°.由AD//BE,得∠BAD+ ∠ABE=180 °.所以∠ABE=180 °- ∠BAD=180°-80°=100°,∠ABC= ∠ABE- ∠EBC=100°-40°=60°.在△ABC中,∠ACB=180 °- ∠ABC- ∠ CAB=180°-60°-30° =90°,答:从B岛看A,C两岛的视角∠ABC是60 °,从C岛看A,B两岛的视角∠ACB是90°.北.AD北.CB.东E【变式题】如图,B岛在A岛的南偏西40°方向,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东80°方向,求从C岛看A,B两岛的视角∠ACB的度数.解:如图,由题意得BE∥AD,∠BAD=40°,∠CAD=15°,∠EBC=80°,∴∠EBA=∠BAD=40°,∠BAC=40°+15°=55°,∴∠CBA=∠EBC-∠EBA=80°-40°=40°,∴∠ACB=180°-∠BAC-∠ABC=180°-55°-40°=85°.DE1.在△ABC中,∠B=40°,∠C=80°,则∠A的度数为( )A.30° B.40° C.50° D.60°D2.(中考·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,则∠ADE的大小是( )A.45° B.54° C.40° D.50°C练一练3.求出下列各图中的x值.x=70x=60x=30x=50练一练4.如图,则∠1+∠2+∠3+∠4=___________ .BACD4132E40°(280 °练一练5.如图,在△ABC中,BP平分∠ABC,CP平分∠ACB,若∠BAC=60°,求∠BPC的度数.解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=120°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB= (∠ABC+∠ACB)=60°.∵∠PBC+∠PCB+∠BPC=180°,∴∠BPC=180°-60°=120°.【变式题】你能直接写出∠BPC与∠A 之间的数量关系吗?解:∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB= (∠ABC+∠ACB)=60°.∵∠PBC+∠PCB+∠BPC=180°,∴∠BPC=180°- (∠ABC+∠ACB)=180°- (180°-∠A)=90°+ ∠A .6.如图,一艘渔船在B处测得灯塔A在北偏东60°的方向,另一艘货轮在C处测得灯塔A在北偏东40°的方向,那么在灯塔A处观看B和C处时的视角∠BAC是多少度?练一练因为在B处测得灯塔A在北偏东60°的方向,所以∠ABD=60°.又因为∠DBE=90°,所以∠ABE=90°-∠ABD=90°-60°=30°.因为在C处测得灯塔A在北偏东40°的方向,所以∠ACE=90°-40°=50°.所以∠BAC=∠ACE-∠ABE=50°-30°=20°.即在灯塔A处观看B和C处时的视角∠BAC是20°.解:练一练1.如图,从A 处观测C 处的仰角∠CAD = 30°,从B 处观测C 处的仰角∠CBD = 45°.从C 处观测 A,B 两处的视角∠ACB 是多少? ABDC课本练习解:∵∠ABC+∠CBD=180°,∠CBD=45°,∴∠ABC = 135°.又∵∠CAD + ∠ACB + ∠CBA = 180°,∠CAD = 30°,∴∠ACB = 15°.2.如图,一种滑翔伞的形状是左右对称的四边形 ABCD,其中∠A=150°,∠B=∠D=40°.求∠C 的度数.课本练习解:∵∠B+∠BAC+∠ACB=∠D+∠DAC+∠DCA=180°∴∠B + ∠BAC + ∠ACB +∠D + ∠DAC + ∠DCA = 360°.∵∠B =40°,∠D =40°,∠BAD = 150°,∴∠BCD = 130°.三角形的内角和定理证明了解添加辅助线的方法及其目的内容三角形内角和等于180 °课堂小结 展开更多...... 收起↑ 资源预览