资源简介 18.1.1 从分数到分式1.下列各式中:-3x,,,,,分式的个数是 ()A.2 B.3 C.4 D.52.无论a取何值,下列分式总有意义的是 ()A. B.C. D.3.若分式有意义,则x满足的条件为 ()A.x≠±3 B.x≠-3C.x≠3 D.x≥-3且x≠34.若式子有意义,则x的取值范围为 ()A.x≠3 B.x≥1C.x≥1且x≠3 D.x>1且x≠35.(2025·玉溪模拟)若分式的值为0,则x的值为 ()A.0 B.-1 C.0或-1 D.16.若分式的值为负数,则x的取值范围是()A.x>4 B.x<4C.x>-4 D.x<-47.(2024·安徽中考)若分式有意义,则实数x的取值范围是 . 8.若分式的值为0,则x= . 9.(2025·东营质检)当x=2时,分式无意义,则m的值为 . 10.已知每个人做某项工作的效率相同,m个人做d天可以完成,若增加r人,则完成工作所需的天数为 . 11.已知A,B两地相距100米,甲、乙两人分别从A,B两地同时出发,相向而行,速度分别为x米/秒、y米/秒,甲、乙两人第一次相距a(a<100)米时,行驶时间为 秒. 12.当x取何值时,下列分式有意义:(1); (2); (3).13.(创新挑战题·推理能力、应用意识)对于分式:(1)如果x=1,那么y取何值时,分式无意义 (2)如果y=1,那么x取何值时,分式无意义 (3)使分式无意义的x,y有多少对 (4)要使得分式有意义,x,y应有什么关系 (5)如果x=-1,那么y取什么值时,分式的值为零 18.1.1 从分数到分式1.下列各式中:-3x,,,,,分式的个数是 (A)A.2 B.3 C.4 D.52.无论a取何值,下列分式总有意义的是 (A)A. B.C. D.3.若分式有意义,则x满足的条件为 (A)A.x≠±3 B.x≠-3C.x≠3 D.x≥-3且x≠34.若式子有意义,则x的取值范围为 (C)A.x≠3 B.x≥1C.x≥1且x≠3 D.x>1且x≠35.(2025·玉溪模拟)若分式的值为0,则x的值为 (A)A.0 B.-1 C.0或-1 D.16.若分式的值为负数,则x的取值范围是(A)A.x>4 B.x<4C.x>-4 D.x<-47.(2024·安徽中考)若分式有意义,则实数x的取值范围是 x≠4 . 8.若分式的值为0,则x= 2 . 9.(2025·东营质检)当x=2时,分式无意义,则m的值为 1 . 10.已知每个人做某项工作的效率相同,m个人做d天可以完成,若增加r人,则完成工作所需的天数为 . 11.已知A,B两地相距100米,甲、乙两人分别从A,B两地同时出发,相向而行,速度分别为x米/秒、y米/秒,甲、乙两人第一次相距a(a<100)米时,行驶时间为 秒. 12.当x取何值时,下列分式有意义:(1); (2); (3).【解析】(1)要使有意义,则2x-3≠0,解得x≠,∴当x≠时,有意义.(2)要使有意义,则|x|-12≠0,解得x≠±12,∴当x≠±12时,有意义.(3)要使有意义,则x2+1≠0,显然当x为任意实数时,有意义.13.(创新挑战题·推理能力、应用意识)对于分式:(1)如果x=1,那么y取何值时,分式无意义 (2)如果y=1,那么x取何值时,分式无意义 (3)使分式无意义的x,y有多少对 (4)要使得分式有意义,x,y应有什么关系 (5)如果x=-1,那么y取什么值时,分式的值为零 【解析】(1)当x+2y=0时,分式无意义,把x=1代入可得y=-,分式无意义.(2)当x+2y=0时,分式无意义,把y=1代入可得当x+2=0,即x=-2时,分式无意义.(3)当x+2y=0,即x=-2y时,分式无意义,使分式无意义的x,y有无数对.(4)当x+2y≠0,即x≠-2y时,分式有意义.(5)把x=-1代入,当-1-y=0且-1+2y≠0,即y=-1时,分式的值为零. 展开更多...... 收起↑ 资源列表 18.1.1 从分数到分式.docx 18.1.1 从分数到分式—学生版.docx