浙教版备战2026年中考一轮复习专项训练50讲第05讲一次方程(组)及其应用(原卷 教师卷)

资源下载
  1. 二一教育资源

浙教版备战2026年中考一轮复习专项训练50讲第05讲一次方程(组)及其应用(原卷 教师卷)

资源简介

中小学教育资源及组卷应用平台
第05讲 一次方程(组)及其应用
考点展示·课标透视
中考考点 新课标要求
一元一次方程及其解法 掌握等式的基本性质;能解一元一次方程.
二元一次方程及其解法 掌握消元法,能解二元一次方程组;*能解简单的三元一次方程组;
一次方程(组)的应用 能根据现实情境理解方程的意义,能针对具体问题列出方程
知识导航·学法指引
分类研究·深度理解
考点一 一元一次方程基础
一、一元一次方程的相关概念
一元一次方程的概念:只含有一个未知数(元),且未知数的次数都是1,这样的整式方程叫一元一次方程.
一元一次方程的标准形式:ax+b=0(a、b是常数,且a≠0).
方程的解:能使方程两边的值相等的未知数的值叫做方程的解.
解方程:求方程的解得过程叫做解方程.
【易错易混】
1)方程的解与解方程是两个不同的概念,方程的解是一个具体的数值,而解方程是求方程的解的过程;
2)方程的解是通过解方程求得的.
3)方程的解可能不止一个(如x=2和x=-2都是方程的解),也有可能无解(如无解).
二、等式的性质
等式的性质1:等式的两边都加上(或减去)同一个数(或同一个式子),所得的结果仍是等式.即:
如果a=b,那么a±c=a±c
等式的性质2:等式两边都乘以同一个数,或都除以同一个不为0的数,结果仍相等.即:
如果a=b,那么ac = bc; 如果 a=b(c≠0),那么 =
等式的性质3:如果a=b,则b=a (对称性)
等式的性质4:如果a=b,b=c,则a=c (传递性)
【易错易混】
1)利用等式的性质进行变形时,等式两边都要参加运算,而且是同一种运算.
2)等式两边同时除以一个字母时,字母不能为0,若题目没有注明该字母不为0,那么这个变形就不成立.
【典例1】下列方程中,是一元一次方程的是(  )
A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=
【考点】一元一次方程的定义.
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:A、x2﹣4x=3的未知数的最高次数是2次,不是一元一次方程,故A错误;
B、x=0符合一元一次方程的定义,故B正确;
C、x+2y=1是二元一次方程,故C错误;
D、x﹣1=,分母中含有未知数,是分式方程,故D错误.
故选:B.
【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是0,这是这类题目考查的重点.
【典例2】方程2x+a﹣4=0的解是x=﹣2,则a等于(  )
A.﹣8 B.0 C.2 D.8
【考点】方程的解.
【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.
【解答】解:把x=﹣2代入方程2x+a﹣4=0,
得到:﹣4+a﹣4=0
解得a=8.
故选D.
【点评】本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a的方程.
考点二 解一元一次方程
基本思路:通过适当的变形,把一元一次方程化简为ax=b(a、b为常数,且a≠0)的形式,得出方程的解为x=.
步骤 具体做法
去分母 在方程两边都乘以各分母的最小公倍数
去括号 先去小括号,再去中括号,最后去大括号
移项 把含有未知数的项移到方程一边,其它项都移到方程另一边
合并同类项 把方程变为ax=b(a≠0 )的形式
系数化为1 将方程两边都除以未知数系数a,得到方程的解x=
【补充说明】解具体的一元一次方程时,要根据方程的特点灵活安排解题步骤,甚至可以省略某些步骤,有分母的去分母,有括号的去括号.
【典例1】(2025·四川遂宁·中考真题)已知是方程的解,则 .
【答案】2
【分析】本题考查了一元一次方程的解,以及解一元一次方程,理解题意,把代入,解得,即可作答.
【详解】解:∵是方程的解,
∴把代入,得,
∴,
∴,
故答案为:2
【典例2】(2018 临安区)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于(  )个正方体的重量.
A.2 B.3 C.4 D.5
【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.
【解答】解:设一个球体重x,圆柱重y,正方体重z.
根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,
则3x=5z,即三个球体的重量等于五个正方体的重量.
故选:D.
【典例3】如果关x的方程与的解相同,那么m的值是  .
【考点】同解方程.
【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.
【解答】解:解方程=
整理得:15x﹣3=42,
解得:x=3,
把x=3代入=x+4+2|m|
得=3++2|m|
解得:|m|=2,
则m=±2.
故答案为±2.
【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.
考点三 二元一次方程(组)基础
1.二元一次方程
二元一次方程概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程.
二元一次方程的三要素:1)有且只有两个未知数;2)含有未知数的项的次数为1;3)方程两边都是整式.
二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
2.二元一次方程组
二元一次方程组的概念:方程组有两个未知数,每个含有未知数的项的次数都是1,并且一共有两个方程,像这样的方程叫做二元一次方程组.
一般形式:,(其中不同时为0,不同时为0).
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
【易错易混】
1.二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解.
2.在二元一次方程中,给定其中一个未知数的值,就可以通过解一元一次方程的方法求出另一个未知数的值.
3.二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,这两个一次方程不一定都是二元一次方程,但这两个一次方程必须只含有两个未知数.
4.解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.
【典例1】(3分)为促进学生德智体美劳全面发展,某校计划用1200元购买足球和篮球用于课外活动,其中足球80元/个,篮球120元/个,共有多少种购买方案(  )
A.6 B.7 C.4 D.5
【分析】设购买x个足球,y个篮球,利用总价=单价×数量,可列出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种购买方案.
【解答】解:设购买x个足球,y个篮球,
根据题意得:80x+120y=1200,
∴y=10x,
又∵x,y均为正整数,
∴或或或,
∴共有4种购买方案.
故选:C.
【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
【典例2】( 2025·广西)自2025年5月9日起至2025年12月31日,周末自驾游广西的外省籍小客车,可享受高速公路车辆通行费(以下简称高速费)优惠.小悦一家5月中旬从湖南自驾到广西探亲游玩,此次全程所产生的高速费享受的优惠如下:
湖南境内路段 广西境内特定路段 广西境内其他路段
周一至周四 9.5折
周五至周日 9.5折 全免 5折
(1)周六小悦一家从湖南Z市到广西A市,所经湖南境内路段、广西境内特定路段和其他路段的高速费原价分别为a元、b元和c元.求此行程的高速费实付多少元?比原价优惠了多少元?(用代数式表示)
(2)周日他们从A市到K市(全程在广西境内),高速费实付27.55元;周一从K市原路返回到A市,高速费实付95.95元.求此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是多少元.
【分析】(1)根据题意列出代数式即可;
(2)根据题意列出方程组求解即可.
【解答】解:(1)此次行程高速费原价总共为:a+b+c元,
实际支付高速费用:0.95a+0+0.5c=(0.95a+0.5c)元,
优惠了a+b+c﹣(0.95a+0.5c)=(0.05a+b+0.5c)元;
(2)设特定路段和其他路段的单程高速费原价分别x元和y元,

解得:,
故此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是45.9元和55.1元.
【点评】本题考查了代数式、二元一次方程组,掌握二元一次方程是解题的关键.
【典例3】(2025·四川自贡·中考真题)某小区人行道地砖铺设图案如图所示.用10块相同的小平行四边形地砖拼成一个大平行四边形.若大平行四边形短边长.则小地砖短边长( )
A.7cm B.8 C.9 D.
【答案】B
【分析】此题主要考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.设每块小平行四边形地砖的长为,宽为,由图示可得等量关系:①2个长个长4个宽,②一个长一个宽,列出方程组,解方程组即可.
【详解】解:设每块小平行四边形地砖的长为,宽为,
由题意得:,
解得:,
则每块小平行四边形地砖的短边长为,
故选:B.
考点四 解二元一次方程(组)
1.代入消元法
定义:把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
用代入消元法解二元一次方程组的一般步骤:
1)变形.从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来;
2)代入.将变形后的方程代入没变形的方程,得到一个一元一次方程;
3)解元.解这个一元一次方程,求出一个未知数的值;
4)求值.将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.
【易错易混】
1)方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化为整数系数.
2)当求出一个未知数后,把它代入变形后的方程(或),求出另一个未知数的值比较简单
2.加减消元法
定义:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
用加减消元法解二元一次方程组的一般步骤:
1)变形.先观察系数特点,将同一个未知数的系数化成互为相反数或相等的数;
2)加减.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
3)解元.解这个一元一次方程,求出一个未知数的值;
4)求值.将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.
【典例1】(2025·四川凉山·中考真题)若,则的平方根是( )
A.8 B. C. D.
【答案】C
【分析】本题考查非负性,解二元一次方程组,求一个数的平方根,利用二次根式的性质进行化简,先根据非负性,得到关于的二元一次方程组,两个方程相减后求出的值,再根据平方根的定义,进行求解即可.熟练掌握非负性,平方根的定义,是解题的关键.
【详解】解:∵,
∴,
,得:,
∴的平方根是;
故选:C.
【典例2】( 2025·黑龙江龙东)2024年8月6日,第十二届世界运动会口号“运动无限,气象万千”在京发布,吉祥物“蜀宝”和“锦仔”亮相.第一中学为鼓励学生积极参加体育活动,准备购买“蜀宝”和“锦仔”奖励在活动中表现优秀的学生.已知购买3个“蜀宝”和1个“锦仔”共需花费332元,购买2个“蜀宝”和3个“锦仔”共需380元.
(1)购买一个“蜀宝”和一个“锦仔”分别需要多少元?
(2)若学校计划购买这两种吉祥物共30个,投入资金不少于2160元又不多于2200元,有哪几种购买方案?
(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
【分析】(1)分别设“蜀宝”和“锦仔”的单价为未知数,根据题意列二元一次方程组并求解即可;
(2)设购买“蜀宝”x个,则购买“锦仔”(30﹣x)个,根据题意列关于x的一元一次不等式组并求其解集,求出所用的x的非负整数解及对应30﹣x的值即可;
(3)写出W关于x的函数关系式,根据一次函数的增减性和x的取值,确定当x取何值时W值最小,求出其最小值即可.
【解答】解:(1)设购买一个“蜀宝”需要a元,购买一个“锦仔”需要b元.
根据题意,得,
解得.
答:购买一个“蜀宝”需要88元,购买一个“锦仔”需要68元.
(2)设购买“蜀宝”x个,则购买“锦仔”(30﹣x)个.
根据题意,得,
解得6≤x≤8,
∵x为非负整数,
∴x=6,7,8,
当x=6时,30﹣6=24(个),
当x=7时,30﹣7=23(个),
当x=8时,30﹣8=22(个),
∴共有三种购买方案,分别是:
(方案1)购买“蜀宝”6个、“锦仔”24个,
(方案2)购买“蜀宝”7个、“锦仔”23个,
(方案1)购买“蜀宝”8个、“锦仔”22个.
(3)W=88x+68(30﹣x)=20x+2040,
∵20>0,
∴W随x的增大而增大,
∵x=6,7,8,
∴当x=6时W值最小,W最小=20×6+2040=2160.
答:购买方案1需要的资金最少,最少资金是2160元.
【点评】本题考查一次函数的应用、二元一次方程组的应用,掌握二元一次方程组、一元一次不等式组的解法及一次函数的增减性是解题的关键.
【典例3】列方程(组)解应用题
如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.
(1)求一块长方形墙砖的长和宽;
(2)求电视背景墙的面积.
【考点】二元一次方程组的应用..
【专题】一次方程(组)及应用;几何直观;运算能力.
【答案】(1)1.2m,0.3m;
(2)3.6m2.
【分析】(1)首先设一块长方形墙砖的长为x,宽为y,然后用x,y的代数式分别表示出长方形的两条长边分别为2x,x+4y,宽为x+y,进而根据长方形的性质列出方程组,解方程组即可得出答案;
(2)根据长方形的面积计算公式即可得出答案.
【解答】解:(1)设一块长方形墙砖的长为x m,宽为y m.
依题意得:,解得:,
答:一块长方形墙砖的长为1.2m,宽为0.3m.
(2)求电视背景墙的面积为:2×1.2×1.5=3.6(m2).
答:电视背景墙的面积为3.6m2.
【点评】此题主要考查了二元一次方程组的实际应用,长方形的性质,根据长方形的两组对边分别相等列出方程组是解答此题的关键.
考点五 一次方程(组)及其应用
用一元一次方程(组)解决实际问题的一般步骤:
审:审清题意(注意关键词),找出题中的等量关系,理清题中的已知量与未知量;
设:设未知数,并用含未知数的代数式表示其他未知量;
列:根据题中相等关系,列出方程(组);
解:解所列出的方程(组);
验:检验所得的解是不是所列方程的解、是否符合实际意义(这一步可在草稿纸上完成);
答:写出答案,包括单位.
【典例1】(2025·河北·中考真题)甲、乙两张等宽的长方形纸条,长分别为,.如图,将甲纸条的与乙纸条的叠合在一起,形成长为81的纸条,则 .

【答案】99
【分析】本题主要考查了已知式子的值求代数式的值,一元一次方程的应用,由题意可知:重叠部分为: ,设叠部分的长度为k,则,,根据重叠后的总长度为81为等量关系列出关于k的一元一次方程,求解即可得出答案.
【详解】解:由题意可知:重叠部分为: ,
设重叠部分的长度为k,则,,
重叠后的总长度为:,即,
代入,得:,
解得:,
∴,,
∴,
故答案为:99.
【典例2】(2024·海南·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商店售卖某品牌瘦肉粽和五花肉粽.请依据以下对话,求促销活动前每个瘦肉粽、五花肉粽的售价.
【答案】促销活动前每个瘦肉粽的售价为15元,则促销活动前每个五花肉粽的售价10元.
【分析】本题考查了一元一次方程的应用.设促销活动前每个瘦肉粽的售价为元,则促销活动前每个五花肉粽的售价元,根据题意列方程求解即可.
【详解】解:设促销活动前每个瘦肉粽的售价为元,则促销活动前每个五花肉粽的售价元,
依题意得,
解得,

答:促销活动前每个瘦肉粽的售价为15元,则促销活动前每个五花肉粽的售价10元.
【典例3】某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.
(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?
(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?
【考点】二元一次方程组的应用;分式方程的应用..
【专题】一次方程(组)及应用;分式方程及应用;应用意识.
【答案】见试题解答内容
【分析】(1)设购买杂酱面x份,牛肉面y份,利用总价=单价×数量,结合该公司花费3000元一次性购买了杂酱面、牛肉面共170份,可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买牛肉面m份,则购买杂酱面(1+50%)m份,利用单价=总价÷数量,结合每份杂酱面比每份牛肉面的价格少6元,可得出关于m的分式方程,解之经检验后,即可得出结论.
【解答】解:(1)设购买杂酱面x份,牛肉面y份,
根据题意得:,
解得:.
答:购买杂酱面80份,牛肉面90份;
(2)设购买牛肉面m份,则购买杂酱面(1+50%)m份,
根据题意得:6,
解得:m=60,
经检验,m=60是所列方程的解,且符合题意.
答:购买牛肉面60份.
【点评】本题考查了二元一次方程组的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出分式方程.
专项训练·深度理解
专项训练五:一次方程(组)及其应用
(时间:60分钟,总分100分)
一、选择题(本题共10题,每题3分,共30分)
1. 在①+y=1;②3x﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有(  )
A.1个 B.2个 C.3个 D.4个
【考点】二元一次方程的定义.
【分析】利用二元一次方程的定义判断即可得到结果.
【解答】解:在①+y=1(不是);②3x﹣2y=1(是);③5xy=1(不是);④+y=1(是)四个式子中,不是二元一次方程的有2个,
故选B
2. 下列各值中是方程组的解的是(  )
A. B. C. D.
【考点】二元一次方程组的解.
【分析】利用加减消元法求出方程组的解,即可作出判断.
【解答】解:,
①+②得:2a=4,即a=2,
把a=2代入①得:b=1,
则方程组的解为,
故选B
3. ( 2025·河北)“这么近,那么美,周末到河北”.嘉嘉周末到弘济桥游览,发现青石桥面上有三叶虫化石,他想了解其长度,在化石旁放了一支笔拍下照片(如图2).回家后量出照片上笔和化石的长度分别为7cm和4cm,笔的实际长度为14cm,则该化石的实际长度为(  )
A.2cm B.6cm C.8cm D.10cm
【解答】解:设该化石的实际长度为x cm,根据题意得:

解得x=8,
所以该化石的实际长度为8cm.
故选:C.
4. 若二元一次联立方程式的解为,则a+b之值为何?(  )
A.﹣28 B.﹣14 C.﹣4 D.14
【考点】二元一次方程组的解..
【专题】一次方程(组)及应用;运算能力.
【答案】C
【分析】把代入得关于a,b的方程组,解方程组求出a,b,再代入求出a+b的值即可.
【解答】解:把代入得:,
把②代入①得:5a﹣3×(﹣3a)=28,
5a+9a=28,
14a=28,
a=2,
把a=2代入②得:b=﹣6,
∴a+b=2+(﹣6)=﹣4,
故选:C.
【点评】本题主要考查了二元一次方程组的解,解题关键是熟练掌握二元一次方程组的解是使各个方程左右两边相等的未知数的值.
5. (2025·山东烟台·中考真题)某商场打折销售一款风扇,若按标价的六折出售,则每台风扇亏损10元;若按标价的九折出售,则每台风扇盈利95元.这款风扇每台的标价为( )
A.350元 B.320元 C.270元 D.220元
【答案】A
【分析】本题主要考查了一元一次方程的实际应用,设这款风扇每台的标价为元,根据按标价的六折出售,则每台风扇亏损10元可得风扇的进价为元,根据按标价的九折出售,则每台风扇盈利95元可得风扇的进价为元,据此建立方程求解即可.
【详解】解:设这款风扇每台的标价为元,
由题意得,,
解得,
∴这款风扇每台的标价为350元,
故选:A.
6. (2025·四川泸州·中考真题)《九章算术》是中国古代一部重要的数学著作,在“方程”章中记载了求不定方程(组)解的问题.例如方程恰有一个正整数解.类似地,方程的正整数解的个数是( )
A.1 B.2 C.3 D.4
【答案】C
【分析】本题考查了二元一次方程的解,根据题意写出的正整数解,即可求解.
【详解】解:∵

正整数解为:,;,;,共3个,
故选:C.
7. (2025·天津·中考真题)《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为( )
A. B.
C. D.
【答案】A
【分析】本题考查一元一次方程的应用,属于行程问题中的追及问题.解题的关键是找到两马路程相等的等量关系.
设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意,列出方程即可.
【详解】解:设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意得:

故选:A
8. (2025·四川南充·中考真题)我国宋代数学家秦九韶发明的“大衍求一术”阐述了多元方程的解法,大衍问题源于《孙子算经》中“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三……,问物几何?”意思是:有一些物体不知个数,每3个一数,剩余2个;每5个一数,剩余3个…….问这些物体共有多少个?设3个一数共数了x次,5个一数共数了y次,其中x,y为正整数,依题意可列方程( )
A. B.
C. D.
【答案】A
【分析】本题主要考查根据实际问题列二元一次方程,熟练掌握从实际情境中找出等量关系是解题关键.根据题目中“每 3 个一数,剩余 2 个;每 5 个一数,剩余 3 个”这两个条件,分别找出物体总数与、的等式关系,进而列出方程.
【详解】解:∵每 3 个一数,数了次,剩余 2 个,
∴物体总数可表示为 .
又∵每 5 个一数,数了次,剩余 3 个,
∴物体总数也可表示为 .
由于物体总数是固定的,

故选:A.
9. 已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为(  )
A.0 B.1 C.2 D.3
【考点】二元一次方程组的解..
【专题】一次方程(组)及应用;运算能力.
【答案】B
【分析】把方程组的两个方程相减得到2x﹣2y=2m+6,结合x﹣y=4,得到m的值.
【解答】解:∵关于x、y的二元一次方程组为,
①﹣②,得:2x﹣2y=2m+6,∴x﹣y=m+3,∵x﹣y=4,∴m+3=4,∴m=1.
故选:B.
【点评】本题主要考查了二元一次方程组的解,解题的关键是把方程组的两个方程相减得到m的方程,此题难度不大.
10. 某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为(  )
A.6 B.8 C.12 D.16
【分析】设用x张卡纸做侧面,用y张卡纸做底面,则做出侧面的数量为2x个,底面的数量为3y个,然后根据等量关系:底面数量=侧面数量的2倍,列出方程组即可.
【解答】解:设用x张卡纸做侧面,用y张卡纸做底面,
由题意得,,解得 ,
∴用6张卡纸做侧面,用8张卡纸做底面,则做出侧面的数量为12个,底面的数量为24个,这些卡纸最多可以做成包装盒的个数为12个.
故选:C.
【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.还需注意本题的等量关系是:底面数量=侧面数量的2倍.
二、填空题(本题共6题,每题3分,共18分)
11. 如果是方程kx﹣2y=4的一个解,那么k=   .
【考点】二元一次方程的解.
【分析】把方程的解代入方程可得到关于k的方程,解方程即可求得k的值.
【解答】解:
∵是方程kx﹣2y=4的一个解,
∴2k﹣2×(﹣1)=4,解得k=1,
故答案为:1.
12. 已知关于x,y的方程组的解满足x﹣y=4,则a的值为  2 .
【分析】利用方程①﹣方程②,可得出x﹣y=a+2,结合x﹣y=4,可得出a+2=4,解之即可得出a的值.
【解答】解:,
①﹣②得:x﹣y=a+2,
又∵关于x,y的方程组的解满足x﹣y=4,
∴a+2=4,∴a=2.
故答案为:2.
【点评】本题考查了解二元一次方程组以及解一元一次方程,根据二元一次方程组的解满足x﹣y=4,找出关于a的一元一次方程是解题的关键.
13. (2025·广东深圳·中考真题)若关于的方程的解为,则 .
【答案】4
【分析】本题考查了方程的解的定义、一元一次方程的解法,理解方程的解的意义,得到关于a的方程是解题关键.把代入关于x的方程,得到关于a的方程,解方程即可求解.
【详解】解:∵关于的方程的解为,
∴,解得:,
故答案为:4.
14. ( 2025·河北)甲、乙两张等宽的长方形纸条,长分别为a,b.如图,将甲纸条的与乙纸条的叠合在一起,形成长为81的纸条,则a+b=  99  .
【解答】解:根据题意得,,
解得,∴a+b=99,
故答案为:99.
15. (2025·陕西·中考真题)草莓熟了,学校组织同学们参加劳动实践,帮助果农采摘草莓.小康和小悦采摘的时长相同,采摘结束后,小康采摘的草莓比小悦多.已知小康平均每小时采摘,小悦平均每小时采摘,小康采摘的时长是 小时.
【答案】
【分析】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键.利用小康采摘的草莓比小悦多得出等式求出答案.
【详解】解:设两小组采摘了小时,
依题意:,解得:,
因此,两小组采摘了小时.
故答案为:.
16. 2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为  2 和  9 .
【分析】根据题意要求①②可得关于所要求的两数的两个等式,解出两数即可.
【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b
∵外圆两直径上的四个数字之和相等
∴4+6+7+8=a+3+b+11①
∵内、外两个圆周上的四个数字之和相等
∴3+6+b+7=a+4+11+8②
联立①②解得:a=2,b=9
∴图中两空白圆圈内应填写的数字从左到右依次为2,9
故答案为:2;9.
【点评】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.
三、解答题(本题共7题,共52分)
17. (6分)(1)解方程:﹣=1.
解:去分母得:3(x﹣3)﹣2(2x+1)=6,
去括号得:3x﹣9﹣4x﹣2=6,
移项得:﹣x=17,
系数化为1
得:x=﹣17.
(2)(2025·山西·中考真题)解方程组:
【答案】
【详解】解:①+②,得,

将代入②,得,

所以原方程组的解是.
(3)(2025·新疆·中考真题)(1)解方程组:;
【答案】(1)
【详解】解:(1);
得,,
解得,,
把代入②得,,
解得,,
∴原方程组的解为;
18. (6分)(2025·辽宁·中考真题)小张计划购进两种文创产品,在“文化夜市”上进行销售.已知种文创产品比种文创产品每件进价多3元,购进2件种文创产品和3件种文创产品共需花费26元.
(1)求种文创产品每件的进价;
(2)小张决定购进A,B两种文创产品共100件,且总费用不超过550元,那么小张最多可以购进多少件种文创产品?
【答案】(1)种文创产品每件的进价为元
(2)小张最多可以购进50件种文创产品
【分析】本题考查一元一次方程和一元一次不等式的实际应用,正确的列出方程组和不等式,是解题的关键:
(1)设种文创产品每件的进价为元,根据种文创产品比种文创产品每件进价多3元,购进2件种文创产品和3件种文创产品共需花费26元,列出一元一次方程进行求解即可;
(2)设小张购进件种文创产品,根据总费用不超过550元,列出不等式进行求解即可.
【详解】(1)解:设种文创产品每件的进价为元,则:种文创产品每件的进价为元,
由题意,得:,
解得:,
答:种文创产品每件的进价为元;
(2)设小张购进件种文创产品,由(1)可知,种文创产品每件的进价为元,
由题意,得:,
解得:;
答:小张最多可以购进50件种文创产品.
19. (6分)( 2025·河南)为助力乡村振兴,支持惠农富农,某合作社销售我省西部山区出产的甲、乙两种苹果.已知2箱甲种苹果和3箱乙种苹果的售价之和为440元;4箱甲种苹果和5箱乙种苹果的售价之和为800元.
(1)求甲、乙两种苹果每箱的售价.
(2)某公司计划从该合作社购买甲、乙两种苹果共12箱,且乙种苹果的箱数不超过甲种苹果的箱数.求该公司最少需花费多少元.
【解答】解:(1)设甲种苹果每箱的售价为a元/千克,乙种苹果每箱的售价为b元/千克,
根据题意得:,
解得:,
答:甲种苹果每箱的售价为100元,乙种苹果每箱的售价为80元;
(2)设购买甲种苹果x箱,则购买乙种苹果(12﹣x)箱,
根据题意得:12﹣x≤x,
解得:x≥6,
设该公司需花费w元,
根据题意得:w=100x+80(12﹣x)=20x+960,
∵20>0,
∴w随x的增大而增大,
∴当x=6时,w有最小值=20×6+960=1080,
答:该公司最少需花费1080元.\
20. (8分)( 2025·河北)一般固体都具有热胀冷缩的性质,固体受热后其长度的增加称为线膨胀.在0﹣100℃(本题涉及的温度均在此范围内),原长为l m的铜棒、铁棒受热后,伸长量y(m)与温度的增加量x(℃)之间的关系均为y=alx,其中a为常数,称为该金属的线膨胀系数.已知铜的线膨胀系数aCu=1.7×10﹣5(单位:/℃);原长为2.5m的铁棒从20℃加热到80℃伸长了1.8×10﹣3m.
(1)原长为0.6m的铜棒受热后升高50℃,求该铜棒的伸长量(用科学记数法表示).
(2)求铁的线膨胀系数aFe;若原长为1m的铁棒受热后伸长4.8×10﹣4m,求该铁棒温度的增加量.
(3)将原长相等的铜棒和铁棒从0℃开始分别加热,当它们的伸长量相同时,若铁棒的温度比铜棒的高20℃,求该铁棒温度的增加量.
【解答】解:(1)1.7×10﹣5×0.6×50=5.1×10﹣4(m),
即该铜棒的伸长量为5.1×10﹣4m;
(2)aFe1.2×10﹣5,
4.8×10﹣4÷(1.2×10﹣5×1)=40(℃),
即该铁棒温度的增加量为40℃;
(3)设铜棒增加的温度为x℃,则铁棒增加的温度为(x+20)℃,设它们的长度均为l,
由题意得1.7×10﹣5lx=1.2×10﹣5l(x+20),
整理得:17x=12x+240,
解得:x=48,
则x+20=48+20=68,
即该铁棒温度的增加量为68℃.
21. (8分)(2025·湖北)某商店销售A,B两种水果.A水果标价14元/千克,B水果标价18元/千克.
(1)小明陪妈妈在这家商店按标价买了A,B两种水果共3千克,合计付款46元.这两种水果各买了多少千克?
(2)妈妈让小明再到这家商店买A,B两种水果,要求B水果比A水果多买1千克,合计付款不超过50元.设小明买A水果m千克.
①若这两种水果按标价出售,求m的取值范围;
②小明到这家商店后,发现A,B两种水果正在进行优惠活动:A水果打七五折;一次购买B水果不超过1千克不优惠,超过1千克后,超过1千克的部分打七五折.(注:“打七五折”指按标价的75%出售.)若小明合计付款48元,求m的值.
【解答】解:(1)设甲种水果买了x千克,乙种水果买了y千克,
由题意得:,
解得:,
答:甲种水果买了2千克,乙种水果买了1千克;
(2)①设小明买A水果m千克,则小明买B水果(m+1)千克,
由题意得:14m+18(m+1)≤50,
解得:m≤1,
又∵m>0,
∴m的取值范围为0<m≤1;
②设小明买A水果m千克,则小明买B水果(m+1)千克,
由题意得:14×0.75m+18×1+18×0.75×(m+1﹣1)=48,
解得:m=1.25,
答:m的值为1.25.
22. (8分)(2025·江西·中考真题)系文物考古研究院用复原的青铜蒸馏器进行了蒸馏酒实验.用复原的青铜蒸馏器蒸馏粮食酒和芋头酒,需要的原材料与出酒率()如下表:
类别 原材料 出酒率
粮食酒 粮食糟醅(含大米、糯米、谷壳、大曲和蒸馏水 30%
芋头酒 芋头糟醅(含芋头、小曲和蒸馏水) 20%
如果第一次实验分别蒸馏出粮食酒和芋头酒共16公斤;第二次实验分别蒸馏出粮食酒和芋头酒共36公斤,且所用的粮食糟醅量是第一次的2倍,芋头糟醅量是第一次的3倍.
(1)求第一次实验分别用了多少公斤粮食糟醅和芋头糟醅?
(2)受限于当时的生产条件,古代青铜装馏器的出酒量约为现代复原品的80%.若粮食糟醅中大米占比约为,请问,在古代要想蒸馏出这两次实验得到的粮食酒总量,需要准备多少公斤大米?
【答案】(1)第一次实验用粮食糟醅和芋头糟醅的质量分别是40、20公斤.
(2)需要准备公斤大米.
【分析】本题主要考查了二元一次方程组、一元一次方程的应用等知识点,审清题意、正确列出方程组和方程是解题的关键.
(1)第一次实验用粮食糟醅和芋头糟醅的质量分别是x、y公斤,则第一次实验用粮食糟醅和芋头糟醅的质量分别是公斤,然后根据题意列二元一次方程组求解即可;
(2)先求出两次得到粮食酒的总质量,设需要准备z公斤大米,则粮食糟醅的质量为,再根据题意列一元一次方程求解即可.
【详解】(1)解:第一次实验用粮食糟醅和芋头糟醅的质量分别是x、y公斤,则第一次实验用粮食糟醅和芋头糟醅的质量分别是公斤,
由题意可得:,解得:.
答:第一次实验用粮食糟醅和芋头糟醅的质量分别是40、20公斤.
(2)解:两次实验得到的粮食酒总量为公斤,
设需要准备z公斤大米,则粮食糟醅的质量为,
由题意可得:,解得:千克.
答:需要准备公斤大米.
23. (10分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.
(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?
(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?
【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用..
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;一次函数及其应用;应用意识.
【答案】(1)应选用A种食品4包,B种食品2包;
(2)应选用A种食品3包,B种食品4包.
【分析】(1)设选用A种食品x包,B种食品y包,根据要从这两种食品中摄入4600kJ热量和70g蛋白质,可列出关于x,y的二元一次方程组,解之即可得出结论;
(2)设选用A种食品m包,则选用B种食品(7﹣m)包,根据要使每份午餐中的蛋白质含量不低于90g,可列出关于m的一元一次不等式,解之可得出m的取值范围,设每份午餐的总热量为w kJ,利用每份午餐的总热量=每包A种食品的热量×选用A种食品的数量+每包B种食品的热量×选用B种食品的数量,可找出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.
【解答】解:(1)设选用A种食品x包,B种食品y包,
根据题意得:,
解得:.
答:应选用A种食品4包,B种食品2包;
(2)设选用A种食品m包,则选用B种食品(7﹣m)包,
根据题意得:10m+15(7﹣m)≥90,
解得:m≤3.
设每份午餐的总热量为w kJ,则w=700m+900(7﹣m),
即w=﹣200m+6300,
∵﹣200<0,
∴w随m的增大而减小,
∴当m=3时,w取得最小值,此时7﹣m=7﹣3=4.
答:应选用A种食品3包,B种食品4包.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第05讲 一次方程(组)及其应用
考点展示·课标透视
中考考点 新课标要求
一元一次方程及其解法 掌握等式的基本性质;能解一元一次方程.
二元一次方程及其解法 掌握消元法,能解二元一次方程组;*能解简单的三元一次方程组;
一次方程(组)的应用 能根据现实情境理解方程的意义,能针对具体问题列出方程
知识导航·学法指引
分类研究·深度理解
考点一 一元一次方程基础
一、一元一次方程的相关概念
一元一次方程的概念:只含有一个未知数(元),且未知数的次数都是1,这样的整式方程叫一元一次方程.
一元一次方程的标准形式:ax+b=0(a、b是常数,且a≠0).
方程的解:能使方程两边的值相等的未知数的值叫做方程的解.
解方程:求方程的解得过程叫做解方程.
【易错易混】
1)方程的解与解方程是两个不同的概念,方程的解是一个具体的数值,而解方程是求方程的解的过程;
2)方程的解是通过解方程求得的.
3)方程的解可能不止一个(如x=2和x=-2都是方程的解),也有可能无解(如无解).
二、等式的性质
等式的性质1:等式的两边都加上(或减去)同一个数(或同一个式子),所得的结果仍是等式.即:
如果a=b,那么a±c=a±c
等式的性质2:等式两边都乘以同一个数,或都除以同一个不为0的数,结果仍相等.即:
如果a=b,那么ac = bc; 如果 a=b(c≠0),那么 =
等式的性质3:如果a=b,则b=a (对称性)
等式的性质4:如果a=b,b=c,则a=c (传递性)
【易错易混】
1)利用等式的性质进行变形时,等式两边都要参加运算,而且是同一种运算.
2)等式两边同时除以一个字母时,字母不能为0,若题目没有注明该字母不为0,那么这个变形就不成立.
【典例1】下列方程中,是一元一次方程的是(  )
A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=
【典例2】方程2x+a﹣4=0的解是x=﹣2,则a等于(  )
A.﹣8 B.0 C.2 D.8
考点二 解一元一次方程
基本思路:通过适当的变形,把一元一次方程化简为ax=b(a、b为常数,且a≠0)的形式,得出方程的解为x=.
步骤 具体做法
去分母 在方程两边都乘以各分母的最小公倍数
去括号 先去小括号,再去中括号,最后去大括号
移项 把含有未知数的项移到方程一边,其它项都移到方程另一边
合并同类项 把方程变为ax=b(a≠0 )的形式
系数化为1 将方程两边都除以未知数系数a,得到方程的解x=
【补充说明】解具体的一元一次方程时,要根据方程的特点灵活安排解题步骤,甚至可以省略某些步骤,有分母的去分母,有括号的去括号.
【典例1】(2025·四川遂宁·中考真题)已知是方程的解,则 .
【典例2】(2018 临安区)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于(  )个正方体的重量.
A.2 B.3 C.4 D.5
【典例3】如果关x的方程与的解相同,那么m的值是  .
考点三 二元一次方程(组)基础
1.二元一次方程
二元一次方程概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程.
二元一次方程的三要素:1)有且只有两个未知数;2)含有未知数的项的次数为1;3)方程两边都是整式.
二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
2.二元一次方程组
二元一次方程组的概念:方程组有两个未知数,每个含有未知数的项的次数都是1,并且一共有两个方程,像这样的方程叫做二元一次方程组.
一般形式:,(其中不同时为0,不同时为0).
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
【易错易混】
1.二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解.
2.在二元一次方程中,给定其中一个未知数的值,就可以通过解一元一次方程的方法求出另一个未知数的值.
3.二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,这两个一次方程不一定都是二元一次方程,但这两个一次方程必须只含有两个未知数.
4.解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.
【典例1】(3分)为促进学生德智体美劳全面发展,某校计划用1200元购买足球和篮球用于课外活动,其中足球80元/个,篮球120元/个,共有多少种购买方案(  )
A.6 B.7 C.4 D.5
【典例2】( 2025·广西)自2025年5月9日起至2025年12月31日,周末自驾游广西的外省籍小客车,可享受高速公路车辆通行费(以下简称高速费)优惠.小悦一家5月中旬从湖南自驾到广西探亲游玩,此次全程所产生的高速费享受的优惠如下:
湖南境内路段 广西境内特定路段 广西境内其他路段
周一至周四 9.5折
周五至周日 9.5折 全免 5折
(1)周六小悦一家从湖南Z市到广西A市,所经湖南境内路段、广西境内特定路段和其他路段的高速费原价分别为a元、b元和c元.求此行程的高速费实付多少元?比原价优惠了多少元?(用代数式表示)
(2)周日他们从A市到K市(全程在广西境内),高速费实付27.55元;周一从K市原路返回到A市,高速费实付95.95元.求此行程中A市与K市间广西境内特定路段和其他路段的单程高速费原价分别是多少元.
【典例3】(2025·四川自贡·中考真题)某小区人行道地砖铺设图案如图所示.用10块相同的小平行四边形地砖拼成一个大平行四边形.若大平行四边形短边长.则小地砖短边长( )
A.7cm B.8 C.9 D.
考点四 解二元一次方程(组)
1.代入消元法
定义:把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
用代入消元法解二元一次方程组的一般步骤:
1)变形.从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来;
2)代入.将变形后的方程代入没变形的方程,得到一个一元一次方程;
3)解元.解这个一元一次方程,求出一个未知数的值;
4)求值.将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.
【易错易混】
1)方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化为整数系数.
2)当求出一个未知数后,把它代入变形后的方程(或),求出另一个未知数的值比较简单
2.加减消元法
定义:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
用加减消元法解二元一次方程组的一般步骤:
1)变形.先观察系数特点,将同一个未知数的系数化成互为相反数或相等的数;
2)加减.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
3)解元.解这个一元一次方程,求出一个未知数的值;
4)求值.将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.
【典例1】(2025·四川凉山·中考真题)若,则的平方根是( )
A.8 B. C. D.
【典例2】( 2025·黑龙江龙东)2024年8月6日,第十二届世界运动会口号“运动无限,气象万千”在京发布,吉祥物“蜀宝”和“锦仔”亮相.第一中学为鼓励学生积极参加体育活动,准备购买“蜀宝”和“锦仔”奖励在活动中表现优秀的学生.已知购买3个“蜀宝”和1个“锦仔”共需花费332元,购买2个“蜀宝”和3个“锦仔”共需380元.
(1)购买一个“蜀宝”和一个“锦仔”分别需要多少元?
(2)若学校计划购买这两种吉祥物共30个,投入资金不少于2160元又不多于2200元,有哪几种购买方案?
(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
【典例3】列方程(组)解应用题
如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.
(1)求一块长方形墙砖的长和宽;
(2)求电视背景墙的面积.
考点五 一次方程(组)及其应用
用一元一次方程(组)解决实际问题的一般步骤:
审:审清题意(注意关键词),找出题中的等量关系,理清题中的已知量与未知量;
设:设未知数,并用含未知数的代数式表示其他未知量;
列:根据题中相等关系,列出方程(组);
解:解所列出的方程(组);
验:检验所得的解是不是所列方程的解、是否符合实际意义(这一步可在草稿纸上完成);
答:写出答案,包括单位.
【典例1】(2025·河北·中考真题)甲、乙两张等宽的长方形纸条,长分别为,.如图,将甲纸条的与乙纸条的叠合在一起,形成长为81的纸条,则 .

【典例2】(2024·海南·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商店售卖某品牌瘦肉粽和五花肉粽.请依据以下对话,求促销活动前每个瘦肉粽、五花肉粽的售价.
【典例3】某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.
(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?
(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?
专项训练·深度理解
专项训练五:一次方程(组)及其应用
(时间:60分钟,总分100分)
一、选择题(本题共10题,每题3分,共30分)
1. 在①+y=1;②3x﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有(  )
A.1个 B.2个 C.3个 D.4个
2. 下列各值中是方程组的解的是(  )
A. B. C. D.
3. ( 2025·河北)“这么近,那么美,周末到河北”.嘉嘉周末到弘济桥游览,发现青石桥面上有三叶虫化石,他想了解其长度,在化石旁放了一支笔拍下照片(如图2).回家后量出照片上笔和化石的长度分别为7cm和4cm,笔的实际长度为14cm,则该化石的实际长度为(  )
A.2cm B.6cm C.8cm D.10cm
4. 若二元一次联立方程式的解为,则a+b之值为何?(  )
A.﹣28 B.﹣14 C.﹣4 D.14
5. (2025·山东烟台·中考真题)某商场打折销售一款风扇,若按标价的六折出售,则每台风扇亏损10元;若按标价的九折出售,则每台风扇盈利95元.这款风扇每台的标价为( )
A.350元 B.320元 C.270元 D.220元
6. (2025·四川泸州·中考真题)《九章算术》是中国古代一部重要的数学著作,在“方程”章中记载了求不定方程(组)解的问题.例如方程恰有一个正整数解.类似地,方程的正整数解的个数是( )
A.1 B.2 C.3 D.4
7. (2025·天津·中考真题)《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为( )
A. B.
C. D.
8. (2025·四川南充·中考真题)我国宋代数学家秦九韶发明的“大衍求一术”阐述了多元方程的解法,大衍问题源于《孙子算经》中“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三……,问物几何?”意思是:有一些物体不知个数,每3个一数,剩余2个;每5个一数,剩余3个…….问这些物体共有多少个?设3个一数共数了x次,5个一数共数了y次,其中x,y为正整数,依题意可列方程( )
A. B.
C. D.
9. 已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为(  )
A.0 B.1 C.2 D.3
10. 某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为(  )
A.6 B.8 C.12 D.16
二、填空题(本题共6题,每题3分,共18分)
11. 如果是方程kx﹣2y=4的一个解,那么k=   .
12. 已知关于x,y的方程组的解满足x﹣y=4,则a的值为   .
13. (2025·广东深圳·中考真题)若关于的方程的解为,则 .
14. ( 2025·河北)甲、乙两张等宽的长方形纸条,长分别为a,b.如图,将甲纸条的与乙纸条的叠合在一起,形成长为81的纸条,则a+b=   .
15. (2025·陕西·中考真题)草莓熟了,学校组织同学们参加劳动实践,帮助果农采摘草莓.小康和小悦采摘的时长相同,采摘结束后,小康采摘的草莓比小悦多.已知小康平均每小时采摘,小悦平均每小时采摘,小康采摘的时长是 小时.
16. 2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为  2 和  9 .
三、解答题(本题共7题,共52分)
17. (6分)(1)解方程:﹣=1.
(2)(2025·山西·中考真题)解方程组:
(3)(2025·新疆·中考真题)(1)解方程组:;
18. (6分)(2025·辽宁·中考真题)小张计划购进两种文创产品,在“文化夜市”上进行销售.已知种文创产品比种文创产品每件进价多3元,购进2件种文创产品和3件种文创产品共需花费26元.
(1)求种文创产品每件的进价;
(2)小张决定购进A,B两种文创产品共100件,且总费用不超过550元,那么小张最多可以购进多少件种文创产品?
19. (6分)( 2025·河南)为助力乡村振兴,支持惠农富农,某合作社销售我省西部山区出产的甲、乙两种苹果.已知2箱甲种苹果和3箱乙种苹果的售价之和为440元;4箱甲种苹果和5箱乙种苹果的售价之和为800元.
(1)求甲、乙两种苹果每箱的售价.
(2)某公司计划从该合作社购买甲、乙两种苹果共12箱,且乙种苹果的箱数不超过甲种苹果的箱数.求该公司最少需花费多少元.
20. (8分)( 2025·河北)一般固体都具有热胀冷缩的性质,固体受热后其长度的增加称为线膨胀.在0﹣100℃(本题涉及的温度均在此范围内),原长为l m的铜棒、铁棒受热后,伸长量y(m)与温度的增加量x(℃)之间的关系均为y=alx,其中a为常数,称为该金属的线膨胀系数.已知铜的线膨胀系数aCu=1.7×10﹣5(单位:/℃);原长为2.5m的铁棒从20℃加热到80℃伸长了1.8×10﹣3m.
(1)原长为0.6m的铜棒受热后升高50℃,求该铜棒的伸长量(用科学记数法表示).
(2)求铁的线膨胀系数aFe;若原长为1m的铁棒受热后伸长4.8×10﹣4m,求该铁棒温度的增加量.
(3)将原长相等的铜棒和铁棒从0℃开始分别加热,当它们的伸长量相同时,若铁棒的温度比铜棒的高20℃,求该铁棒温度的增加量.
21. (8分)(2025·湖北)某商店销售A,B两种水果.A水果标价14元/千克,B水果标价18元/千克.
(1)小明陪妈妈在这家商店按标价买了A,B两种水果共3千克,合计付款46元.这两种水果各买了多少千克?
(2)妈妈让小明再到这家商店买A,B两种水果,要求B水果比A水果多买1千克,合计付款不超过50元.设小明买A水果m千克.
①若这两种水果按标价出售,求m的取值范围;
②小明到这家商店后,发现A,B两种水果正在进行优惠活动:A水果打七五折;一次购买B水果不超过1千克不优惠,超过1千克后,超过1千克的部分打七五折.(注:“打七五折”指按标价的75%出售.)若小明合计付款48元,求m的值.
22. (8分)(2025·江西·中考真题)系文物考古研究院用复原的青铜蒸馏器进行了蒸馏酒实验.用复原的青铜蒸馏器蒸馏粮食酒和芋头酒,需要的原材料与出酒率()如下表:
类别 原材料 出酒率
粮食酒 粮食糟醅(含大米、糯米、谷壳、大曲和蒸馏水 30%
芋头酒 芋头糟醅(含芋头、小曲和蒸馏水) 20%
如果第一次实验分别蒸馏出粮食酒和芋头酒共16公斤;第二次实验分别蒸馏出粮食酒和芋头酒共36公斤,且所用的粮食糟醅量是第一次的2倍,芋头糟醅量是第一次的3倍.
(1)求第一次实验分别用了多少公斤粮食糟醅和芋头糟醅?
(2)受限于当时的生产条件,古代青铜装馏器的出酒量约为现代复原品的80%.若粮食糟醅中大米占比约为,请问,在古代要想蒸馏出这两次实验得到的粮食酒总量,需要准备多少公斤大米?
23. (10分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.
(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?
(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表