3.2 平面直角坐标系 第3课时 建立适当的平面直角坐标系 课件 (共15张PPT)

资源下载
  1. 二一教育资源

3.2 平面直角坐标系 第3课时 建立适当的平面直角坐标系 课件 (共15张PPT)

资源简介

(共15张PPT)
3.2 平面直角坐标系
第3课时 建立适当的平面直角坐标系
1.建立适当的平面直角坐标系,描绘物体位置。(重点)
2.根据已知条件建立适当的平面直角坐标系,利用平面直角坐标系解决实际问题。(难点)
1.位于 x 轴上的点的坐标的特征: ;
位于 y 轴上的点的坐标的特征: 。
2.与 x 轴平行的直线上点的坐标的特征: ;
与 y 轴平行的直线上点的坐标的特征: 。
纵坐标等于0
横坐标等于0
纵坐标相同
横坐标相同
(6,0)
例1 如图,长方形 ABCD 的长与宽分别是 6 和 4 ,建立适当的平面直角坐标系,写出各个顶点的坐标。
B
C
D
A
x
y
o
6
4
(0,4)
(0,0)
(6,4)
6
解:如图,以点 C 为坐标原点,分别以CD, CB 所在的直线为 x 轴、 y 轴,建立平面直角坐标系。此时点 C 坐标为(0,0)。
由 CD=6, CB=4 ,可得 D, B , A 的坐标分别为 D( 6 , 0 ), B( 0 , 4 ),
A( 6 , 4 )。
O
y
x
O
y
x
O
x
y
O
y
x
y
O
x
探究 对于例 1 的问题,你还有其他建立平面直角坐标系的方法吗?它们分别有什么特点
y
O
x
建立平面直角坐标系的步骤:
(1)定原点。尽可能选择一些特殊点作为坐标原点(如垂足、顶点、中心等);
(2)定坐标轴。坐标轴尽可能建立在已知图形中的线段上;
(3)完善平面直角坐标系,如箭头、坐标轴符号、原点、单位长度等。
注意:
(1)选取的坐标系不同,同一点的坐标不同;
(2)为使计算简化,证明方便,需要恰当地选取坐标系;
(3)“恰当”意味着要充分利用图形的特点:
垂直关系、对称关系、平行关系、中点等。
例2 如图1,对于边长为 4 的等边三角形 ABC , 建立适当的平面直角坐标系 ,写出各个顶点的坐标。
图1
图2
解: 如图 2 ,以边 BC 所在的直线为 x 轴,以边 BC 的中垂线为 y 轴建立平面直角坐标系。
由等边三角形的性质可知,
△ABO是直角三角形。
∴ AO=

∴ 顶点 A,B,C 的坐标分别为
A (0,),B (-2,0),C (2,0)。
想一想,还有其他方法吗?
图2
x
y
3
2
1
P(4,4)
O
思考 如图,在一次“寻宝”游戏中,寻宝人已经找到了坐标为 A (3,2)和 B (3,-2)两个标志点,并且知道藏宝地点的坐标为(4,4),如何确定平面直角坐标系找到“宝藏”?
1
2
3
4
4
A
解:由题意,建立如图所示的平面直角坐标系。
则“宝藏”的位置为点P(4,4)。
B
1.如图,把狮子座的星座图放在网格中,若点 A 的坐标是(1,1),点 B 的坐标是(2,3),则点 C 的坐标是( )
A.(0,2) B.(-1,2)
C.(-2,0) D.(-1,1)
B
2.如图是 A,B,C,D 四位同学的家所在位置,若以 A 同学家的位置为坐标原点建立平面直角坐标系,C 同学家的位置的坐标为(1,5),则 B,D 两同学家的位置的坐标分别为( )
A.(2,3),(3,2) B.(3,2),(2,3)
C.(2,3),(-3,2) D.(3,2),(-2,3)
D
3.如图,长方形 ABCD 的边 CD 在 y 轴上,原点 O 为 CD 的中点。已知 AB=4,边 AB 交 x 轴于点 E(-5,0),
则点 B 的坐标为( )
A.(-5,2) B.(-2,-5)
C.(5,-2) D.(-5,-2)
4.中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱。如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“卒”位于点 。
(-1,1)
D
5.如图,正方形 ABCD 的边长为 6 。
(1)如果以点 A 为原点,AB 所在的直线为 x 轴,建立平面直角坐标系,那么 y 轴是哪条直线?
(2)写出正方形的顶点 A,B,C,D 的坐标;
(3)请另建立一个平面直角坐标系,此时正
方形的顶点 A,B,C,D 的坐标又分别是多
少?
解:(1) y 轴是 AD 所在的直线。
y
(2) A(0,0),B(6,0),C(6,6),D(0,6)。
(3)此题答案不唯一,如:以 D 为原点,DC 所在直线为 x 轴,AD 所在直线为 y 轴建立平面直角坐标系。
则 A(0,-6),B(6,-6),
C(6,0),D(0,0)。
x
y
(O)
坐标的特征
建立直角坐标系
建立适当的直角坐标系

展开更多......

收起↑

资源预览