资源简介 中小学教育资源及组卷应用平台16.1幂的运算学校:___________姓名:___________班级:___________考号:___________一、单选题1.在等式中,括号里面的式子应当是( )A. B. C. D.2.已知:,,则值是( )A.12 B.6 C.7 D.53.已知,,则的值等于( )A. B. C. D.4.下列运算正确的是( )A. B. C. D.5.下列运算正确的是( )A. B.C. D.6.已知,,则的值为( )A.4 B.6 C.10 D.247.下列计算正确的是( )A. B. C. D.8.下列各式运算结果为的是( )A. B. C. D.9.计算的结果是( )A. B. C. D.10.水由水分子组成,水中约有个水分子,则水中有( )个水分子.A. B. C. D.11.下列计算正确的是( )A. B. C. D.12.计算的结果等于( )A.1 B. C. D.二、填空题13.若,则的值为 .14.若,,,则 .15.若,,则 .16.已知,,则 .17.计算:,,则 .三、解答题18.已知,,求的值.19.(1)已知,求的值.(2)已知,求的值.20.(1)若,,求的值.(2)若,求的值.21.(1)已知,求的值;(2)已知,求的值.22.记=﹣2,=(﹣2)×(﹣2),=(﹣2)×(﹣2)×(﹣2),…,(n个-2相乘,其中n为正整数).(1)计算:;(2)求的值;(3)说明与互为相反数.23.规定两数,之间的一种运算,记作:如果,那么.例如:因为,所以.(1)根据上述规定,填空:_____;(2)若,,且,求的值.(3)①若,,,请你尝试证明:;②进一步探究这种运算时发现一个结论:,证明:设,,,,即..结合①,②探索的结论,计算:_____.24.计算:(1);(2);(3).《16.1幂的运算》参考答案题号 1 2 3 4 5 6 7 8 9 10答案 C A B A D D D B A B题号 11 12答案 A D1.C【分析】本题考查了幂的运算,掌握是解题的关键.【详解】解:因为,所以括号里面的式子应当是.故选:C.2.A【分析】本题主要考查了幂的乘方逆用,同底数幂乘法逆用,利用幂的运算性质,将分解为,再代入已知条件计算即可.【详解】解:∵,,∴,故选:A.3.B【分析】本题考查了同底数幂的逆用,根据,求出,然后代入求解即可,掌握同底数幂相乘的运算法则是解题的关键.【详解】解:∵,∴,∴,∴,故选:.4.A【分析】本题考查的是积的乘方,同底数幂的乘法,幂的乘方,合并同类项,根据以上运算的运算法则分别计算即可判断.【详解】解:,故选项A运算正确,符合题意;,故选项B运算不正确;,故选项C运算不正确;和次数不同,不能直接相加,∴选项D运算不正确;故选:A.5.D【分析】本题考查了合并同类项,幂的乘方,同底数幂相乘,根据相关计算算法逐一判断即可,熟知相关计算法则是解题的关键.【详解】解:A、,故A错误,不符合题意;B、,故B错误,不符合题意;C、无法合并,故C错误;不符合题意;D、,故D正确,符合题意,故选:D.6.D【分析】本题考查了同底数幂乘法的逆用,熟练掌握幂的运算法则是解题的关键.根据同底数幂的乘法法则的逆用公式即可直接得出答案.【详解】解;,故选:.7.D【分析】本题考查了同底数幂的乘法,幂的乘方与积的乘方.根据幂的运算性质和整式乘法法则,需逐一验证各选项的正确性,【详解】解:A、,故该选项A不正确,不符合题意;B、,故该选项B不正确,不符合题意;C、,故该选项C不正确,不符合题意;D、,故该选项D正确,符合题意;故选D.8.B【分析】本题主要考查合并同类项,幂的乘方,同底数幂的乘除法等计算,掌握运算法则是解题的关键.根据相关运算法则对选项进行运算,并判断,即可解题.【详解】解:A、与不是同类项,不能合并,故不符合题意;B、,符合题意;C、,不符合题意;D、,不符合题意;故选:B.9.A【分析】本题考查了同底数幂的乘法法则,即同底数幂相乘,底数不变,指数相加.根据同底数幂的乘法法则计算即可.【详解】解:故选:A.10.B【分析】本题考查有理数乘方的应用,根据“水中约有个水分子,”,则水中含有的水分子的个数为,再利用有理数的乘方和同底数幂的乘方进行运算即可.掌握相应的运算法则是解题的关键.【详解】解:∵水中约有个水分子,,∴,∴水中有个水分子.故选:B.11.A【分析】本题主要考查了幂的乘方,同底数幂乘除法,合并同类项.根据同底数幂乘除法,幂的乘方和合并同类项法则求解即可.【详解】解:A、,本选项符合题意;B、,本选项不符合题意;C、与不是同类项,不能合并,本选项不符合题意;D、,本选项不符合题意;故选:A.12.D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:,故选:D.【点睛】本题考查了积的乘方以及同底数幂的乘法,掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键.13.2【分析】利用幂的乘方与积的乘方进行计算,得出关于的方程,解方程即可得出答案.【详解】解:,,,,,,,,,故答案为:2.【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.14.3【分析】本题考查了积的乘方,幂的乘方,同底数幂的乘法的逆用,根据积的乘方,幂的乘方,同底数幂的乘法的运算法则推出,从而得到,即可求出结果.【详解】解:,,,,,,,,,,故答案为:3.15.18【分析】本题考查了积的乘方与幂的乘方、同底数幂的乘法,牢记运算性质是关键.先把两边平方,从而求出的值,再根据同底数幂的乘方求出的值.【详解】解:∵,∴,又∵,∴.故答案为:18.16.18【分析】该题考查了同底数幂乘法和幂的乘方,根据同底数幂乘法和幂的乘方逆运用计算即可.【详解】解:∵,,则,故答案为:18.17.128【详解】本题考查同底数幂乘法的逆用,根据同底数幂乘法的逆用法则解答即可,也是解题关键.【分析】解:∵,,∴.故答案为:128.18.【分析】本题主要考查了同底数幂的乘法,掌握其运算法则是解题的关键.根据,代入求值即可.【详解】解:,,.19.(1);(2)【分析】(1)利用幂的乘方法则,同底数幂的乘法法则进行计算,即可得出答案;(2)由,得出,再利用幂的乘方法则,同底数幂的乘法法则进行计算,即可得出答案.【详解】解:(1),,,,,;(2),,.【点睛】本题考查了幂的乘方与同底数幂乘法,掌握幂的乘方法则,同底数幂的乘法法则是解决问题的关键.20.(1)72;(2)【分析】本题考查了同底数幂的乘法、幂的乘方,掌握同底数幂的乘法、幂的乘方的运算法则是解题的关键.(1)根据幂的乘方法则、同底数幂的乘法法则计算;(2)根据幂的乘方法则、同底数幂的乘法法则计算.【详解】解:(1)因为,,所以,,所以;(2)因为,所以,所以,所以,所以,所以.21.(1)14;(2)108【分析】(1)原式先提取公因式xy,再整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】解:(1)当x+y=2,xy=7时,=xy(x+y)=7×2=14;(2)∵,,∴===27×4=108.【点睛】此题(1)考查了因式分解的应用,将所求式子进行适当的分解是解本题的关键;(2)考查了同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.22.(1)32;(2)0;(3)说明见解析【分析】(1)根据题意列出算式,结合有理数的乘方法则计算即可;(2)根据题意列出算式,结合同底数幂的乘法法则计算即可;(3)列式求出,即可得到与互为相反数.【详解】(1)解:;(2)解:;(3)解:∵,∴与互为相反数.【点睛】本题考查了新运算,有理数的乘方,同底数幂的乘法,相反数,灵活运用同底数幂的乘法法则变形是解题的关键.23.(1)3(2)(3)①见解析;②【分析】本题考查了新运算,同底数幂的乘法,幂的乘方,理解新运算是解题的关键.(1)根据规定的运算计算即可;(2)根据规定的运算得,,则,由即可求解;(3)①由规定的运算得,,,再根据,即,即可证明结论成立;②由材料中结论得;设,,则,再由规定的运算即可求得c的值,从而求得结果.【详解】(1)解:∵,∴;故答案为:3;(2)解:∵,,且,∴,,∴;(3)①证明:,,,,,,,,即:,;②解:;设,,则,,,,,,故答案为:3.24.(1)(2)(3)【分析】本题主要考查了同底数幂的乘法运算.(1)按照同底数幂的乘法运算法则计算即可.(2)把变成,然后再按照同底数幂的乘法运算法则计算即可.(3)把变成,然后再按照同底数幂的乘法运算法则计算即可.【详解】(1)解:(2)(3)21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览