资源简介 广东省阳江市阳东区2024-2025学年八年级下学期7月期末数学试题一、单选题1.在函数中,自变量x的取值范围是( )A.x> B.x< C.x≥ D.x≤2.若,则x的值可以是( )A. B. C.1 D.23.依据所标数据,下列四边形一定是平行四边形的是( )A. B.C. D.4.在平面直角坐标系中,一次函数的图象是( )A. B. C. D. 5.若的三边a, b,c满足, 则的形状是( )A.等腰三角形 B.钝角三角形 C.锐角三角形 D.直角三角形6.如图,C,D是射线上的点,,分别以点C,D为圆心,长为半径作弧,两弧交于点 E,连接与交于点F.若,四边形的面积为,则的长为( )A. B.4 C. D.87.如图,在中,D,E,F分别是,,的中点.若,,则四边形的周长是( )A.28 B.14 C.10 D.78.世界读书日是每年4月23日,某中学为了解学生们的阅读情况,随机调查了八年级(1)班7位学生读书日所在周的阅读时间(单位:小时),调查结果汇总成如图所示的折线统计图,关于这7位学生的阅读时间,下列说法错误的是( )A.平均数为24小时 B.中位数为23小时C.众数为22小时 D.方差为6.29.漏刻是我国古代的一种计时工具,据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用,小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位是时间的一次函数,如下表是小明记录的部分数据,其中有一个的值记录错误,这个错误的的值是( )cm … 0 1 2 3 …… 0.7 1.2 1.5 1.9 …A.0.7 B.1.2 C.1.5 D.1.910.如图,在平面直角坐标系中,平行四边形的边落在x轴的正半轴上, 且,, 若直线以每秒1个单位长度的速度向下平移,则经过( )秒该直线可将平行四边形的面积平分?A.6秒 B.秒 C.5秒 D.3秒二、填空题11.已知八年级参加烹饪、清洁、收纳、种植、采摘五项课程的人数分别为37,32,41,29,38,则这组数据的中位数为 .12.某地海拔高度与温度的关系可用来表示,则该地区某海拔高度为的山顶上的温度为 .13.小丽进行投掷标枪训练,总共投掷10次,前9次标枪的落点如图所示,此时这组成绩 (单位:)的平均数是,方差是.若第10次投掷标枪的落点恰好在线上,且投掷结束后这组成绩的方差是,则 (填“>”“=”或“<”).14.在画一次函数的图象时,小雯同学列表如下,其中“▲”表示的数为 .x … 0 1 2 …y … 5 3 1 ▲ …15.如图,在平面直角坐标系中,O为坐标原点,B为x轴上一点,菱形的边为长2,, 点D是边上一动点 (不与点 O, B重合), 点E在边上, 且,下列结论:①; ②的大小随点D的运动而变化;③直线 的解析式为 ④的最小值为 其中错误的有 .(填写序号)三、解答题16.计算:17.已知y关于x的函数 ,且该函数是正比例函数,求m的值.18.数学期末总评成绩由作业分数、课堂参与分数、期末分数三部分组成,并按的比确定,已知小辉的作业分数为80分,课堂参与分数为90分,期末分数为85分,求他的期末总评成绩为多少分?19.如图,在正方形网格中,每个小正方形的边长均为1,A,B,C是网格中的三个格点(即小正方形的顶点).(1)线段的长为 , 线段的长为 ;(2)判断线段 与线段 之间的位置关系.20.天虹超市销售蓝莓,根据以往的销售经验,每天的售价与销售量之间有如下关系:每千克售价x (元) 60 59 58 57 56 … 30每天销售量y (千克) 50 55 60 65 70 … 200(1)已知销售量y (千克)与售价x (元)之间的函数关系是一次函数,试求出该函数的函数解析式;(2)如果周六的销售量是170千克,那么这天的售价是每千克多少元?21.如图,在菱形 中,对角线 相交于点O,过点D作于点M,连接,延长 至点 N,连接.(1)请你只添加一个条件,使得四边形为矩形,你添加的条件是 ,并进行证明;(2)若,,求 的长.22.春节是中华民族最为重要的传统节日之一,光明中学语文老师给八年级的学生布置了一篇主题为“我的春节”的作文,并随机抽取八年级 (1)班、(2)班各10名学生,对作文成绩(百分制)进行整理、描述和分析(成绩用x(单位:分)表示,共分成四个等级,:,:,:,:), 下面给出了部分信息.八年级 (1) 班的学生B等级的成绩为92, 92, 93, 94;八年级 (2) 班的学生A等级的成绩为95, 95, 95, 97, 100.请根据相关信息,回答以下问题:八年级 (1)、(2)班抽取的学生作文成绩统计表:班级 平均数 中位数 众数 方差八年级 (1)班 92 a 92 23.4八年级 (2)班 92 94 b 29.8(1)填空: , ,扇形统计图中C对应的圆心角度数为 ;(2)补全八年级 (2)班抽取的学生作文成绩条形统计图;(3)若该校八年级共500人,则成绩在95分及以上的估计有多少人?(4)请从平均数、中位数、众数、方差中选取合适的统计量,对两个班级学生的作文成绩进行评价.23.请你认真阅读思考下面的材料,完成相关问题.【数学模型】如图①,A,B是直线l同旁的两个定点,在直线l上确定一点P,使的值最小.方法:作点A关于直线l的对称点,连接交l于点P,则点P即为所求.此时,的值最小,且【模型应用】(1)如图②,经测量得A,B两点到河边l的距离分别为米,米,且米.在l上确定一点P,则的最短路径长为______米;(2)如图③,在正方形中,,点E在边上,且,点P是对角线上一个动点,求的最小值;(3)如图④,在平面直角坐标系中,点,.请在x轴上确定一点P,使的值最小,并求出的最小值.参考答案1.D解析:根据二次根式的性质,被开方数大于等于0,得:1-2x≥0,解得x≤.故选D.2.D解:∵,∴,解得,符合题意的为2,故选D.3.B解:A、∵,,∴一组对边平行,另一组对边相等,∴图中的四边形不一定是平行四边形,故A不符合题意;B、∵,,∴两组对边分别相等,∴图中四边形一定是平行四边形,故B符合题意;C、∵,,∴一组对边平行,另一组对边不平行,∴图中的四边形不是平行四边形,故C不符合题意;D、∵,∴一组对边平行,∴图中的四边形不一定是平行四边形,故D不符合题意.故选:B.4.D解:一次函数中,令,则;令,则,∴一次函数的图象经过点和,∴一次函数的图象经过一、三、四象限,故选:D.5.D解:∵,设三边分别为、、(),其中最长边为;∵∴为直角三角形。由于三边比例不相等,排除等腰三角形;最大角为直角,排除钝角和锐角三角形;故选:D6.B解:根据题意可知,,∵,∴,∴四边形是菱形,∴,,,∵,四边形面积为,∴,∴,∴,∵在中,由勾股定理可得,∴,故选:B.7.B解:D,E,F分别是,,的中点,、分别是的中位线,,且,,四边形是平行四边形,,,四边形的周长为:,故选:B.8.D解:由折线图知:读书日所在周的阅读时间从小到大重新排列为:21,22,22,23,25,27,28,平均数是(小时),故选项A不合题意;中位数是,故选项B不符合题意;由22出现了2次,故其众数为22,故选项C不合题意;方差是:,故选项D不合题意;故选:D.9.B解: 水位是时间的一次函数,设过点,的函数解析式为,则,解得,即,当,,当,,点也在直线上,而点不在直线上,与题中有一个的值记录错误相符合,故记录错误的值为1.2.故选:B.10.A解:连接、,交于点D,当经过D点时,该直线可将的面积平分,∵四边形是平行四边形,∴,∵,,∴,设平移后的直线解析式为,且平移后的直线平行于,∴,∵平移后的直线经过点,∴平移后的直线的解析式为,把代入得,,∴平移后的直线与轴交点坐标为,同理:与轴交点坐标为,∵,∴直线要向下平移6个单位,∴经过6秒该直线可将平行四边形的面积平分,故选:A.11.37解:将数据从小到大排列:29,32,37,38,41,则中位数为37,故答案为:37.12.解:∵∴把代入∴故答案为:13.解:由题意可得,前9次标枪的平均数和10次投掷标枪的平均数相同,均为,∵第10次投掷标枪的落点恰好在线上,∴第10次投投掷结束后这组成绩更均数,数据波动越小,数据越稳定,则方差更小,∴.故答案为:.14.解:设该函数的解析式为,∵点,在该函数图象上,∴,解得,即该函数解析式为,当时,,故答案为:.15.②解:∵菱形的边长为,,∴,为等边三角形,∴,,,在和中,∴;(故①正确)∴,,∴,∴为等边三角形,∴,∴的大小随点的运动而是不变化的;(故②不正确)如图,过点作轴于,∴,∵四边形是菱形,且边长为,,∴,,,,∴,∴,∴,∴,∴,设直线的解析式为,∴,∴,∴直线的解析式为;(故③正确)根据垂线段最短,∴当时,有最小值,∵,∴,∵∴四边形是平行四边形,又∵,∴四边形是矩形,∴,∵为等边三角形,∴,即的最小值为.(故④正确).故答案为:②.16.0解:原式.17.解:由题意得:,且,解得:.18.85解:(分).答:小辉的期末总评成绩为85分.19.(1)(2)(1)解:由网格得:,故答案为:;(2)如图:连接,则,∴,∴,∴∴.20.(1)(2)这天的售价是每千克36元(1)解:设,把点、分别代入上式得解得∴(2)解:当,得解得,答:这天的售价是每千克36元.21.(1),证明见解析(2)(1)解:添加的条件为. 证明:∵四边形是菱形,∴,,∵,,∴,,∴四边形是平行四边形,,,∴四边形是矩形,故答案为:;(2)解:∵四边形是菱形,,,,,∵,∴,∵为的中点,,∴,∵,∴,,∴,∴,∵,∴, .22.(1),95,(2)补全条形统计图见解析(3)成绩在95分及以上的估计有200人;(4)八年级(2)班学生的作文成绩较好,见解析(1)解:由题意可知,八年级(1)班10名同学成绩等级的人数为人,八年级(1)班参赛的学生等级的成绩为:92, 92, 93, 94;∴处在中间位置的两个数都是92,93,因此中位数是,即,八年级(2)班参赛的学生等级的成绩为:95, 95, 95, 97, 100.等级的人,等级的人,则等级的人,八年级(2)班10名学生成绩出现次数最多的是95,共出现3次,因此众数是95,即,扇形统计图中C对应的圆心角的度数为,故答案为:,95,;(2)解:由(1)可得等级人,等级的人,补全统计图如图所示,;(3)解:∵八年级(1)班成绩在95分及以上的有(人),八年级(2)班成绩在95分及以上的有5人,∴(人),∴成绩在95分及以上的估计有200人;(4)解:八年级(2)班学生的作文成绩较好.∵八年级(2)班学生成绩的中位数、众数都比八年级(1)班的高.∴八年级(2)班学生的作文成绩较好.23.(1)1500(2)(3)P点坐标为;的最小值为(1)解:作点A关于直线l的对称点,连接,过点作并交线于点M,∴米,在中,米,米,(米),∴“将军饮马”问题中的最短路径长为1500米,故答案为:1500;(2)如图,连接,设与交于点P,∵四边形是正方形,∴点B与D关于对称,∴,∴最小.即P在与的交点上时,最小,为的长度.∵直角中,,∴.∴的最小值为.(3)如图,作A点关于x轴的对称点,连接交x轴于P点,P点即为所求:利用对称的性质得到,则,的值最小;A点关于x轴对称的点的坐标为,设直线的解析式为,把代入得:,解得,∴直线的解析式为,当时,,解得,∴P点坐标为;的最小值为:. 展开更多...... 收起↑ 资源预览