第四章 一次函数 期末总复习拔尖卷(含答案)北师大版2025—2026学年八年级上册

资源下载
  1. 二一教育资源

第四章 一次函数 期末总复习拔尖卷(含答案)北师大版2025—2026学年八年级上册

资源简介

第四章一次函数期末总复习拔尖卷北师大版2025—2026学年八年级上册
总分:120分 时间:90分钟
姓名:________ 班级:_____________成绩:___________
一.单项选择题(每小题5分,满分40分)
题号 1 3 4 5 6 7 8
答案
1.若函数是正比例函数,则的值为( )
A. B. C. D.
2.下列各图给出了与自变量之间的对应关系,其中能表示是的函数的是( )
A.②④ B.①③ C.①④ D.③④
3.一元一次方程的解是,则函数的图象与轴的交点坐标是( )
A. B. C. D.
4.函数y=2x+1的图象经过的象限是(  )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
5.如果一次函数的函数值y随x的增大而减小,那么实数m的取值范围是( )
A. B. C. D.
6.直线沿轴向右平移2个单位长度,得到的图象对应的函数解析式为( )
A. B. C. D.
7.已知点在正比例函数的图象上,若点,也在这个正比例函数的图象上,且,则和的大小关系是( )
A. B. C. D.
8.甲、乙两车沿同一条路同时出发前往B地,甲车到达B地后立即以原速沿原路返回,乙车到达B地后停止运动.两车距B地的距离,与甲车行驶时间的函数图象如图所示,下列正确的是( )
A. B.
C.返程时 D.两次相遇的时间间隔为
二.填空题(每小题5分,满分20分)
9.如图直线y1=kx+2(k≠0)与y2=x+b交于P点,点P的横坐标是1,则关于x的方程kx+2=x+b的解是   .
10.若一次函数y=(3﹣k)x﹣k的图象不经过第二象限,则k的取值范围是    .
11.将直线y=﹣2x向下平移后得到直线l,若直线l经过点(a,b),且2a+b=﹣3,则直线l的解析式为   .
12.如图,直线与x,y轴分别相交于点A,B,点C在线段AB上,且点C坐标为(﹣6,m),点D为线段OB的中点,点P为OA上一动点,则当△PCD的周长最小时,点P的坐标为   .
三.解答题(共6小题,总分60分,每题须有必要的文字说明和解答过程)
13.已知A,B是一次函数y=kx+b图象上的两点.
(1)若A,B两点的坐标分别是(3,﹣4),(0,2),求这个一次函数的表达式.
(2)若A,B两点的坐标分别是(m,n﹣2),(m+1,n),求k的值.
14.已知一次函数y=(m+4)x+m+2.
(1)若y随x增大而减小,求m的取值范围;
(2)若其图象与直线y=﹣2x+4的交点在x轴上,求m的值;
(3)若其图象不经过第二象限,且m为整数,求m的值.
15.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
车型 每车限载人数(人) 租金(元/辆)
商务车 6 300
轿车 4
(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
16.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.
请根据图象解决下列问题:
(1)求高度为5百米时的气温;
(2)求T关于h的函数表达式;
(3)测得山顶的气温为6℃,求该山峰的高度.
17.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象分别与x轴、y轴交于点B(12,0)和点C(0,12),并与正比例函数的图象交于点A.
(1)求直线BC的表达式.
(2)求△AOC的面积.
18.一次函数y=kx﹣k+2(k为常数,且k≠0).
(1)若点(﹣1,3)在一次函数y=kx﹣k+2的图象上,
①求k的值;
②设P=y+x,则当﹣2≤x≤5时,求P的最大值.
(2)若当m﹣3≤x≤m时,函数有最大值M,最小值N,且M﹣N=6,求此时一次函数y的表达式.
参考答案
一、选择题
1—8:BCBABCCD
二、填空题
9.【解答】解:x的方程kx+2=x+b的解为:x=1,
故答案为:x=1.
10.【解答】解:由题意知,一次函数y=(3﹣k)x﹣k的图象不经过第二象限,
故,
解之得:0≤k<3.
故答案为:0≤k<3.
11.【解答】解:设直线y=﹣2x向下平移m个单位后得到直线l,
∴直线l的解析式为y=﹣2x﹣m,
∵直线l经过点(a,b),
∴﹣2a﹣m=b,
∴m=﹣(2a+b),
∵2a+b=﹣3,
∴m=3,
∴直线l的解析式为y=﹣2x﹣3.
故答案为:y=﹣2x﹣3.
12.【解答】解:如图,作D关于x轴对称点E,连接CE,交x轴于点P′,当点P与点P′重合时,△PCD的周长最小,
∴PD=PE,
∴△PCD的周长PC+PD+CD=PC+PE+CD=CE+CD,
∵点C(﹣6,m)在直线上,
∴,
∴C(﹣6,1),
由直线,当x=0时,y=4,
∴B(0,4),
由题意可得:D(0,2),
∴E(0,﹣2),
设直线CE解析式为y=kx+b,
∴,
∴,
∴,
当y=0时,x=﹣4,
∴点P的坐标为(﹣4,0),
故答案为:(﹣4,0).
三、解答题
13.【解答】解:(1)∵A,B两点的坐标分别是(3,﹣4),(0,2)且在一次函数y=kx+b图象上,
∴,解得,
∴一次函数解析式为:y=﹣2x+2.
(2)∵A,B两点的坐标分别是(m,n﹣2),(m+1,n)且在一次函数y=kx+b图象上,
∴,
两式相减得:k=2.
14.【解答】解:(1)∵y随x增大而减小,
∴m+4<0,即m<﹣4;
(2)∵﹣2x+4=0时,x=2,一次函数y=(m+4)x+m+2与直线y=﹣2x+4的交点在x轴上,
∴直线y=﹣2x+4与x轴的交点(2,0),一次函数y=(m+4)x+m+2过点(2,0),
∴(m+4)×2+m+2=0,
解得:;
(3)分两种情况考虑:
①当函数图象经过第一、三、四象限时,,
解得:﹣4<m<﹣2;
②当函数图象经过第一、三象限时,,
解得:m=﹣2.
综上所述:m的取值范围为﹣4<m≤﹣2,
∵m为整数,
∴m=﹣3或m=﹣2.
15.【解答】解:(1)设租用一辆轿车的租金为x元,
由题意得:300×2+3x=1320,
解得 x=240,
答:租用一辆轿车的租金为240元;
(2)①只租赁商务车,
∵(辆);
∴需要租赁6辆商务车(坐满)时,所用租金为:6×300=1800(元);
②只租赁商轿车,
∵(辆);
∴需要租赁轿车9辆,所用租金为:9×240=2160(元);
③混合租赁两种车,
设租赁商务车m辆,租赁轿车n辆,总租金为w元,
由题意,得34≤6m+4n<38,
w=300m+240n.
∵m,n>0,且均为整数,
∴当m=1时,n=7,w=300×1+240×7=1980,
当m=2时,n=6,w=300×2+240×6=2040,
当m=3时,n=4,w=300×3+240×4=1860,
当m=4时,n=3,w=300×4+240×3=1920,
当m=5时,n=1,w=300×5+240×1=1740,
∴m=5时,租金最少为1740元;
所以租用商务车5辆和轿车1辆时,所付租金最少为1740元.
16.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),
∴13.2﹣1.2=12(℃),
∴高度为5百米时的气温大约是12℃;
(2)设T关于h的函数表达式为T=kh+b,
则:,
解得,
∴T关于h的函数表达式为T=﹣0.6h+15(h>0);
(3)当T=6时,6=﹣0.6h+15,
解得h=15.
∴该山峰的高度大约为15百米,即1500米.
17.【解答】解:(1)将点B和点C坐标代入y=kx+b得,

解得,
所以直线BC的表达式为y=﹣x+12.
(2)由﹣x+12得,
x=8,
则﹣x+12=4,
所以点A的坐标为(8,4),
所以.
18.【解答】解:(1)①把(﹣1,3)代入y=kx﹣k+2得﹣k﹣k+2=3,
解得k;
②当k时,yx,
∴P=x+y=xxx,
∵y随x的增大而增大,
∴当﹣2≤x≤5时,x=5时,P的值最大,
当x=5时,P54,
即P的最大值为4;
(2)当k>0时,M=km﹣k+2,N=k(m﹣3)﹣k+2,
∵M﹣N=6,
∴km﹣k+2﹣[k(m﹣3)﹣k+2]=6,
解得k=2,
此时一次函数解析式为y=2x;
当k<0时,N=km﹣k+2,M=k(m﹣3)﹣k+2,
∵M﹣N=6,
∴k(m﹣3)﹣k+2﹣(km﹣k+2)=6,
解得k=﹣2,
此时一次函数解析式为y=﹣2x+4;
综上所述,一次函数解析式为y=2x或y=﹣2x+4.

展开更多......

收起↑

资源预览