资源简介 (共65张PPT)目的基因的PCR扩增及其扩增产物的鉴定分析综合性设计性实验此实验共包括如下六个部分第一部分,目的基因选择第二部分,PCR引物设计第三部分,PCR实验操作第四部分,PCR产物电泳鉴定第五部分,PCR产物测序鉴定第六部分,目的基因序列变异分析第一部分 目的基因选择候选基因简介在本实验中,有三个候选基因,分别是NGAL,Fascin和Ezrin。这三个基因在食管癌及其他多种肿瘤中呈过表达,说明它们在肿瘤的发生发展中起重要的生物学作用。汕头大学医学院生物化学与分子生物学教研室李恩民课题组曾对这三个基因进行了深入研究,在国外杂志上发表SCI收录研究论文20余篇,已形成系列优势。同学们可查阅相关资料,选择感兴趣的基因来做PCR实验。NGAL(neutrophil gelatinase-associated lipocalin)即中性粒细胞明胶酶相关脂质运载蛋白,是脂质运载蛋白(lipocalin) 家族的一个成员。NGAL基因的蛋白产物具有保护调节基质金属蛋白酶-9的活性,作为小分子铁配合物结合蛋白参与机体铁代谢和天然免疫反应等功能。另外,NGAL作为一种早期标志物还可以帮助判定缺血性肾损伤程度。NGAL 基因NGAL的mRNA信息在NCBI核酸数据库中有来自不同实验室登记的多个版本,包含完整编码区的有BC033089和NM_005564等,编码区长为597 bp,编码198个氨基酸,包含了N端前部长为20个氨基酸的信号肽序列(为核酸序列的1-60 bp)信号肽预测网站http://www.cbs.dtu.dk/services/SignalP/信号肽 (signal peptide): 某种分泌蛋白质及细胞膜蛋白质等,以前体物质多肽的形式合成,其N末端含有作为通过膜时之信号的氨基酸序列,这种氨基酸序列称信号肽或信号序列(signal sequence)。NGAL核酸编码区序列及其相应的蛋白序列:前20个AA为信号肽序列2001年汕头大学医学院生物化学与分子生物学教研室李恩民课题组以永生化食管上皮细胞系SHEE 和食管癌细胞系SHEEC 互为对照,用cDNA 微列阵进行筛选,用RNA 印迹和RT-PCR 进行鉴定,cDNA 克隆测序后与GenBank 进行BLAST 分析比较。结果表明NGAL 基因在SHEEC中出现显著差异过表达,其cDNA 序列与小鼠24p3、大鼠NRL (neu-related lipocalin) 和人中性粒细胞NGAL 具有较高的相似性。这提示NGAL 基因在永生化食管上皮细胞恶性转化中可能发挥着重要作用,可能是一种新的癌基因或促癌基因。AB利用cDNA 芯片筛选两种细胞的差异表达基因A.永生化食管上皮细胞系SHEEB.食管癌细胞系SHEECA B C反转录PCR检测NGAL在两种细胞的mRNA水平A.永生化食管上皮细胞系SHEEB.食管癌细胞系SHEECC. 100 bp DNA markerFascin蛋白的mRNA全长为2767bp,由5‘端非翻译区111bp碱基,3’端非翻译区1174bp碱基,1482bp的全编码序列区和6个PloyA信号肽组成,编码493个氨基酸,分子量约为55kD。Fascin蛋白定位于细胞质张力纤维和细胞膜皱褶(ruffles),边缘的丝状伪足(filopodia)、微棘(microspikes)的核心肌动蛋白束中。Fascin 基因以往研究发现,Fascin基因在许多上皮来源的肿瘤细胞系,如宫颈癌Hela、胃癌AGS、大肠癌LM1215和SW480、胰腺癌BxPC3和T3H4等细胞系中均上调表达。细胞的丝状伪足和微棘与细胞的运动,癌细胞的转移有密切关系,提示Fascin蛋白可能在细胞迁移、细胞粘附以及细胞间信息交流等过程中发挥作用。ATGACCGCCAACGGCACAGCCGAGGCGGTGCAGATCCAGTTCGGCCTCATCAACTGCGGCAACAAGTACCTGACGGCCGAGGCGTTCGGGTTCAAGGTGAACGCGTCCGCCAGCAGCCTGAAGAAGAAGCAGATCTGGACGCTGGAGCAGCCCCCTGACGAGGCGGGCAGCGCGGCCGTGTGCCTGCGCAGCCACCTGGGCCGCTACCTGGCGGCGGACAAGGACGGCAACGTGACCTGCGAGCGCGAGGTGCCCGGTCCCGACTGCCGTTTCCTCATCGTGGCGCACGACGACGGTCGCTGGTCGCTGCAGTCCGAGGCGCACCGGCGCTACTTCGGCGGCACCGAGGACCGCCTGTCCTGCTTCGCGCAGACGGTGTCCCCCGCCGAGAAGTGGAGCGTGCACATCGCCATGCACCCTCAGGTCAACATCTACAGCGTCACCCGTAAGCGCTACGCGCACCTGAGCGCGCGGCCGGCCGACGAGATCGCCGTGGACCGCGACGTGCCCTGGGGCGTCGACTCGCTCATCACCCTCGCCTTCCAGGACCAGCGCTACAGCGTGCAGACCGCCGACCACCGCTTCCTGCGCCACGACGGGCGCCTGGTGGCGCGCCCCGAGCCGGCCACTGGCTACACGCTGGAGTTCCGCTCCGGCAAGGTGGCCTTCCGCGACTGCGAGGGCCGTTACCTGGCGCCGTCGGGGCCCAGCGGCACGCTCAAGGCGGGCAAGGCCACCAAGGTGGGCAAGGACGAGCTCTTTGCTCTGGAGCAGAGCTGCGCCCAGGTCGTGCTGCAGGCGGCCAACGAGAGGAACGTGTCCACGCGCCAGGGTATGGACCTGTCTGCCAATCAGGACGAGGAGACCGACCAGGAGACCTTCCAGCTGGAGATCGACCGCGACACCAAAAAGTGTGCCTTCCGTACCCACACGGGCAAGTACTGGACGCTGACGGCCACCGGGGGCGTGCAGTCCACCGCCTCCAGCAAGAATGCCAGCTGCTACTTTGACATCGAGTGGCGTGACCGGCGCATCACACTGAGGGCGTCCAATGGCAAGTTTGTGACCTCCAAGAAGAATGGGCAGCTGGCCGCCTCGGTGGAGACAGCAGGGGACTCAGAGCTCTTCCTCATGAAGCTCATCAACCGCCCCATCATCGTGTTCCGCGGGGAGCATGGCTTCATCGGCTGCCGCAAGGTCACGGGCACCCTGGACGCCAACCGCTCCAGCTATGACGTCTTCCAGCTGGAGTTCAACGATGGCGCCTACAACATCAAAGACTCCACAGGCAAATACTGGACGGTGGGCAGTGACTCCGCGGTCACCAGCAGCGGCGACACTCCTGTGGACTTCTTCTTCGAGTTCTGCGACTATAACAAGGTGGCCATCAAGGTGGGCGGGCGCTACCTGAAGGGCGACCACGCAGGCGTCCTGAAGGCCTCGGCGGAAACCGTGGACCCCGCCTCGCTCTGGGAGTACTAGMTANGTAEAVQIQFGLINCGNKYLTAEAFGFKVNASASSLKKKQIWTLEQPPDEAGSAAVCLRSHLGRYLAADKDGNVTCEREVPGPDCRFLIVAHDDGRWSLQSEAHRRYFGGTEDRLSCFAQTVSPAEKWSVHIAMHPQVNIYSVTRKRYAHLSARPADEIAVDRDVPWGVDSLITLAFQDQRYSVQTADHRFLRHDGRLVARPEPATGYTLEFRSGKVAFRDCEGRYLAPSGPSGTLKAGKATKVGKDELFALEQSCAQVVLQAANERNVSTRQGMDLSANQDEETDQETFQLEIDRDTKKCAFRTHTGKYWTLTATGGVQSTASSKNASCYFDIEWRDRRITLRASNGKFVTSKKNGQLAASVETAGDSELFLMKLINRPIIVFRGEHGFIGCRKVTGTLDANRSSYDVFQLEFNDGAYNIKDSTGKYWTVGSDSAVTSSGDTPVDFFFEFCDYNKVAIKVGGRYLKGDHAGVLKASAETVDPASLWEYFascin基因的编码区序列Fascin基因的蛋白序列Fascin蛋白的三级结构:由4个β-三叶草结构组成,含多个β折叠目前已有课题组发现,在永生化食管上皮细胞SHEE向食管癌细胞SHEEmt的恶性转化中,Fascin基因呈现上调表达,并且在食管癌组织中也检测到Fascin蛋白呈阳性表达。Fascin在食管癌中的具体功能以及过表达的机制至今仍没有得到很好的阐明。为此我们设计并合成了靶向Fascin基因的siRNA,试图通过RNA干扰的方法减少Fascin基因的表达,从而探讨Fascin对肿瘤的分化、分裂增殖和浸润等生物学行为的影响。扫描电镜结果显示抑制Fascin表达后,EC109细胞突触形成明显减少。细胞免疫荧光结果显示代表Fascin蛋白的绿色荧光在被干扰细胞(A)中要比对照细胞(B)的弱ABEzrin基因Ezrin为ERM(Ezrin,radixin,moesin )蛋白家族成员之一,ERM家族成员大多位于丝状突和膜伸展部位,基本功能就是将肌动蛋白栓系到细胞膜和将膜蛋白锚定在特定的部位,这样可维持细胞膜表面的一些特殊结构,如微绒毛和细胞膜突起等。ERM家族蛋白还参与细胞表面粘附分子的定位,通过细胞与细胞、细胞与基质之间的相互作用参与细胞粘附作用降。ERM家族蛋白还是酪氨酸激酶的受体,并通过Rho-GTP酶参与信号转导。Ezrin含有585个氨基酸,等电点为6.15,理论分子量为69kD。Ezrin分子带有大量电荷(38.5%的氨基酸残基带电荷),这可能是导致它的理论分子量与实际分子量不同的原因(Ezrin实际分子量为80kD)。Ezrin定位与染色体6q25.2-q26,DNA长度为1761个碱基,含13个外显子。ATGCCGAAACCAATCAATGTCCGAGTTACCACCATGGATGCAGAGCTGGAGTTTGCAATCCAGCCAAATACAACTGGAAAACAGCTTTTTGATCAGGTGGTAAAGACTATCGGCCTCCGGGAAGTGTGGTACTTTGGCCTCCACTATGTGGATAATAAAGGATTTCCTACCTGGCTGAAGCTGGATAAGAAGGTGTCTGCCCAGGAGGTCAGGAAGGAGAATCCCCTCCAGTTCAAGTTCCGGGCCAAGTTCTACCCTGAAGATGTGGCTGAGGAGCTCATCCAGGACATCACCCAGAAACTTTTCTTCCTCCAAGTGAAGGAAGGAATCCTTAGCGATGAGATCTACTGCCCCCCTGAGACTGCCGTGCTCTTGGGGTCCTACGCTGTGCAGGCCAAGTTTGGGGACTACAACAAAGAAGTGCACAAGTCTGGGTACCTCAGCTCTGAGCGGCTGATCCCTCAAAGAGTGATGGACCAGCACAAACTTACCAGGGACCAGTGGGAGGACCGGATCCAGGTGTGGCATGCGGAACACCGTGGGATGCTCAAAGATAATGCTATGTTGGAATACCTGAAGATTGCTCAGGACCTGGAAATGTATGGAATCAACTATTTCGAGATAAAAAACAAGAAAGGAACAGACCTTTGGCTTGGAGTTGATGCCCTTGGACTGAATATTTATGAGAAAGATGATAAGTTAACCCCAAAGATTGGCTTTCCTTGGAGTGAAATCAGGAACATCTCTTTCAATGACAAAAAGTTTGTCATTAAACCCATCGACAAGAAGGCACCTGACTTTGTGTTTTATGCCCCACGTCTGAGAATCAACAAGCGGATCCTGCAGCTCTGCATGGGCAACCATGAGTTGTATATGCGCCGCAGGAAGCCTGACACCATCGAGGTGCAGCAGATGAAGGCCCAGGCCCGGGAGGAGAAGCATCAGAAGCAGCTGGAGCGGCAACAGCTGGAAACAGAGAAGAAAAGGAGAGAAACCGTGGAGAGAGAGAAAGAGCAGATGATGCGCGAGAAGGAGGAGTTGATGCTGCGGCTGCAGGACTATGAGGAGAAGACAAAGAAGGCAGAGAGAGAGCTCTCGGAGCAGATTCAGAGGGCCCTGCAGCTGGAGGAGGAGAGGAAGCGGGCACAGGAGGAGGCCGAGCGCCTAGAGGCTGACCGTATGGCTGCACTGCGGGCTAAGGAGGAGCTGGAGAGACAGGCGGTGGATCAGATAAAGAGCCAGGAGCAGCTGGCTGCGGAGCTTGCAGAATACACTGCCAAGATTGCCCTCCTGGAAGAGGCGCGGAGGCGCAAGGAGGATGAAGTTGAAGAGTGGCAGCACAGGGCCAAAGAAGCCCAGGATGACCTGGTGAAGACCAAGGAGGAGCTGCACCTGGTGATGACAGCACCCCCGCCCCCACCACCCCCCGTGTACGAGCCGGTGAGCTACCATGTCCAGGAGAGCTTGCAGGATGAGGGCGCAGAGCCCACGGGCTACAGCGCGGAGCTGTCTAGTGAGGGCATCCGGGATGACCGCAATGAGGAGAAGCGCATCACTGAGGCAGAGAAGAACGAGCGTGTGCAGCGGCAGCTGCTGACGCTGAGCAGCGAGCTGTCCCAGGCCCGAGATGAGAATAAGAGGACCCACAATGACATCATCCACAACGAGAACATGAGGCAAGGCCGGGACAAGTACAAGACGCTGCGGCAGATCCGGCAGGGCAACACCAAGCAGCGCATCGACGAGTTCGAGGCCCTGTAAEzrin的编码区序列Ezrin蛋白含有四个功能域名称 起始 终点 功能FERM_N 9 86 将胞浆蛋白连接到膜上FERM_M 88 206FERM_C 210 299ERM 338 586 结合胞浆蛋白目前已发现Ezrin在食管癌及切缘食管粘膜组织中的位置分布有胞膜分布、胞浆分布和胞膜胞浆混合分布等三种模式。恶性程度越高的癌细胞越易具有胞浆分布模式,说明Ezrin细胞定位的变化可能在食管癌的发生发展过程中发挥重要作用。第二部分,PCR引物设计引物决定了PCR产物的长度和特异性。目前有多种引物设计软件,如primer premier5、Oligo和北京军事医学科学院李伍举教授开发的Biosun等,Internet免费引物设计网站有primer 3,Primerfinder等。引物设计有以下几个原则:(1)引物的特异性。引物应根据目的序列进行设计,引物与非靶序列之间不要超过 70%的同源性或连续8个的碱基互补,减少非特异产物;(2)引物的长度。一般指引物中能与模板序列互补结合的部分,不包括在5‘端额外增加的酶切位点序列和其他序列。引物长度以18~24 bp为佳。(3)引物3’末端的碱基。引物3’末端是延伸的始端,碱基错配会影响延伸效率。当最后一个碱基是A时,容易发生错配,所以引物3’末端最好不要为A;(4)引物的G+C含量一般为40%~60%,过高或过低都不利于引发反应;(5)两条引物不能形成稳定的二聚体,或引物自身不能形成稳定的二级发夹结构,这些都会影响引物与模板的结合。(6)两条引物的融解温度Tm值尽量不要相差太大,引物的Tm值粗略计算公式为Tm = 4 (G+C)+2(A+T);(7)引物的5'端对扩增特异性没有影响,因此可以被修饰而不影响扩增的特异性,引物5′端修饰包括加酶切位点、标记生物素和荧光等,引物3'端是延伸的开始,不能进行任何修饰。引物设计软件primer premier 5.0的使用可通过两个方法将序列输入软件中在表中粘贴序列打开原有的序列文件选择序列文件所在位置在对话框中输入待扩增序列点击左上角的“Primer”按钮Hairpin: 引物自身是否会形成发夹结构Dimer: 同一种引物是否会形成二聚体False primiring: 引物在待扩增序列中其他位置是否有配对Cross Dimer: 正向与反向引物间是否会形成二聚体引物设计界面正向和反向引物的互换正向和反向引物的评价正向和反向引物的信息每点击左边红色的按钮,就出现相应的内容对正向和反向引物进行编辑可对引物进行增加或减少碱基用键盘输入了5个碱基引物的信息改动后引物的信息重新回到双引物的界面“Edit”-“Copy”-“Sense Primer”5' CGCCTCGAGAAAAGACAGGACTCCACCTCA 3'输出引物序列了解并掌握PCR基因扩增的基本原理熟悉PCR基因扩增技术的具体操作过程实验目的第三部分 PCR实验操作一、概述PCR:使用一对寡核苷酸引物,以目的序列为模板,利用DNA合成 酶和四种脱氧核糖核酸进行DNA的体外合成反应。PCR技术具有灵敏度高,特异性高、操作方便和重复性好等特点,能够在几个小时内获得多达几百万拷贝的目的基因。该技术在上个世纪80年代中期由美国K.Mullis发明建立,经过近二十年已发展成包括多种衍生技术,在很多领域中广泛使用,K.Mullis也因此获得1993年度的诺贝尔化学奖。二、PCR基本原理DNA在细胞中的复制是一个复杂的酶促脱氧核糖核酸聚合过程,是 DNA聚合酶、DNA连接酶、引发酶、RNA引物、四种脱氧核糖核酸、DNA超螺旋酶、离子环境等多成份参与的过程。PCR是在试管内使用最基本的成份模拟了细胞内的DNA复制,所以在一个PCR中必需成分是1. 模板DNA2. DNA聚合酶3. 四种脱氧核糖核酸4. 正向和反向两条引物5. 适当的缓冲体系。模板序列:待扩增的DNA序列,一般为双链的DNA可包括线形双螺旋DNA,如基因组DNA,及闭环双链DNA,如质粒;模板的来源很广,如从细胞/细菌中提取基因组DNA、提取mRNA经反转录得到cDNA、质粒、病毒等;每个反应中模板的量为1 ng~1 μg。质粒DNA和纯化的DNA的量可少一些,而基因组DNA的量应多一些。PCR灵敏度很高,所以在操作中注意避免非目的基因序列的污染,否则会导致PCR的非特异性扩增。1.模板DNA引物(primer)也称为寡核苷酸引物,常规的PCR反应需要两种引物,分别成为5′端引物和3’端引物,或称为正向引物和反向引物。通常DNA及mRNA序列的写法为5′→3′,所以5′端引物与目的序列的5′末端序列相同,而3′端引物与目的序列的3′末端序列反向互补。2.引物它们作为DNA扩增的起始部分,能限定待扩增DNA序列的长度。为了保证扩增的特异性和有效性,引物与模板相匹配部分应至少有15~18bp。5′5′3′3′5′5′3′3′上游引物下游引物DNA聚合酶:以DNA为模板,以脱氧核糖核酸为底物催化合成新的DNA的一种酶。早期的PCR反应使用的DNA聚合酶为大肠杆菌DNA聚合酶I的Klenow片段。但该酶在高温下容易失活,需要在每次合成反应进行时候再加入一份酶。随着新的耐热DNA聚合酶的发现及在PCR反应中的应用,使PCR操作更方便,产量更稳定。目前商品化的DNA聚合酶有Taq DNA聚合酶和Pfu DNA聚合酶。Taq DNA聚合酶最适工作温度为75-80℃。该酶具有5′→3′聚合酶活性,在镁离子存在情况下可催化核苷酸沿5′→3′方向发生聚合反应。3. DNA聚合酶4.脱氧核糖核酸四种脱氧核苷三磷酸即dATP、dTTP、dCTP和dGTP,为PCR反应中DNA合成原料。在新的一个反应体系中,这四种脱氧核糖核酸的起始浓度应该都相等,如果其中一种的浓度明显不同于其他的就会诱发错配,并降低新链合成速度。缓冲液提供PCR反应所必需的合适酸碱度与离子环境。主要成分有KCl、Tris-Cl和MgCl2。其中Mg2+的浓度最重要,它能影响DNA聚合酶的活性,以及模板与PCR产物的解链温度。5.缓冲液变性:是指模板的热变性,双螺旋模版DNA成为单链的DNA分子;在应用Taq DNA聚合酶进行PCR反应时,变性往往在94℃~95℃条件下进行。这也是Taq DNA聚合酶进行30个左右的PCR循环而活力不致受到过多损失时所能耐受的最适温度。退火:是指引物和模板在局部形成互补的杂交链的过程。退火温度比两条寡核苷酸引物的熔解温度低5~10℃,PCR实验要对退火温度进行优化。二、PCR基本步骤延伸:在镁离子存在条件下,DNA聚合酶按碱基互补原则,催化四种脱氧核糖核酸加在引物的3′端,使引物沿5′→3′方向生成与模版DNA互补的新DNA链。双链模版DNA变性退火5′3′5′3′5′5′3′3′5′5′3′3′5′5′3′3′上游引物下游引物延伸3′5′5′3′3′5′5′3′多次循环(2n 拷贝)下面为一个典型的PCR循环参数设置:备注:* 比两条引物的Tm值低5~10℃。94℃ 5 min94℃ 30 sX ℃* 30 s72℃ 1 kb/min72℃ 5 min25-35个循环三、影响PCR因素虽然PCR操作很方便,但影响因素也很多,从而影响PCR的特异性和高效性。引物变性温度和时间退火温度和时间延伸温度和时间循环次数引物决定了PCR产物的长度和特异性。引物的设计要求请看本实验讲义“引物设计”部分。1.引物在PCR反应刚开始时,为保证作为模板的双链DNA完全变性成单链DNA,一般设为95℃、5 min;在随后的循环中,可设为95℃、30s。有些模板DNA的G+C含量较高,变性温度就越高。太高的变性温度和太长的变性时间会影响DNA聚合酶的活性。2.变性温度和时间退火温度与引物的Tm值相关,一般比Tm值低5~10℃。退火温度设置过低,会导致非特异性扩增;退火温度过高,则影响引物与模板的结合而降低PCR效率。在退火时间里,引物与模板相结合,时间太短会使引物与模板未完全结合而导致无法延伸;时间过长容易产生引物在模板上的非特异性结合或形成引物二聚体。退火时间设置为30s基本上就足够了。3.退火温度和时间所用DNA聚合酶的最佳活性温度决定了延伸温度,如Taq聚合酶的最佳温度为70~80度,所以延伸温度设为72℃即可。在实践中Taq DNA聚合酶的延伸效率约为500 bp/30 s,若待扩增的片段较长,可适当延长时间,但时间过长又会致非特异性扩增。4.延伸温度和时间在经过一定的循环次数后,随着聚合酶活性的降低,引物浓度降低等因素,PCR产物不再呈指数增加,此时称为平台效应。循环次数设为25~30次,即可满足一般的分子生物学实验要求。过多的循环次数会导致碱基错配增加和非特异性扩增的出现。5.循环次数DNA模板:以pPIC9-NGAL为模板,来扩增不包含信号肽序列的NGAL编码区引物:PCR上游引物(P1):5′-CGCCTCGAGAAAAGACAGGACTCCACCTCA -3′PCR下游引物(P2):5′-CGGAATTCTCAGCCGTCGATACACTGGTC -3′底下有横线的碱基为酶切位点:XholI (P1),EcoRI(P2)2×Taq PCR Master Mix (广州佰路生物科技有限公司生产,产品成份为: 0.1 U Taq DNA Polymerase/ml 500 mM dNTP each 50 mM Tris-HCl (pH8.7) 20 mM KCl 4 mM MgCl2无菌水100bp plus ladder DNA marker本实验所用试剂实验操作95℃ 2min94℃ 30s60℃ 30s72℃ 30s72℃ 5min30个循环按以下次序将各成分加PCR管中。2×Taq PCR MasterMix 5 lP1 (12.5 M ) 1 lP2 (12.5 M) 1 l无菌水 2 lpPIC9-NGAL 1 l反应体系:10 l混匀,稍加离心并标记。PCR反应于ABI 2720 Thermer cycler进行,PCR反应条件:凝胶准备① 称1g琼脂糖置三角瓶中,加100ml 1×TAE;② 微波炉加热大约2分钟,熔化琼脂糖;③ 熔化的琼脂糖自然冷却到60~70℃时,加入EB 5μl,并轻轻混匀。胶床准备① 将梳子垂直插入到胶床的小凹槽内,梳齿底端和床面有1mm的间隙;② 将胶床放在调整好的水平台上;铺胶:将冷却致60℃的凝胶倒入准备好的胶床内,凝胶厚度约5 mm;室温下静置30分钟左右,凝胶固化。将带凝胶 的胶床置于电泳槽中,并使样品孔位于电场负极;第四部分 PCR产物电泳鉴定向电泳槽中加入1×TAE电泳缓冲液,越过凝胶表面即可;轻轻拔出固定在凝胶中的梳子;样品准备:向核酸样品中加入约为样品体积1/6的上样缓冲液,用加样器轻轻混匀上样:用加样器吸取样品,轻轻的加入到凝胶的样品孔中,加样量为10μl盖上电泳槽,接通电源,开始电泳;电泳条件:电压80v;时间20~25分钟;电泳结束后,切断电源,取出凝胶;电泳结果分析:① 紫外检测仪直接观察电泳条带② 摄影记录琼脂糖凝胶电泳预期结果:500 bp560 bpPCR产物的直接测序:从琼脂糖凝胶中回收PCR产物后测序。PCR产物连接到载体后测序:从琼脂糖凝胶中回收PCR产物,利用连接酶将PCR产物连接到载体如pGEM-T后,转化大肠杆菌提取质粒后测序。美国应用生物系统公司 3130 基因分析仪24 小时无人监控操作仪器设置更方便更简单新型自动灌胶系统进行灌胶检测池加热器改进了温度控制通过 96 孔和 384 孔板自动进样多色荧光检测第五部分 PCR产物测序鉴定观看测序结果的软件Chromas软件运行界面打开一个测序结果峰型排列良好,无高大杂峰,说明测序结果可靠将测序结果输出为文本文件虽然现在的PCR技术使PCR扩增有很高的真实性,即PCR产物与模板DNA的一致性很高,但由于PCR扩增毕竟是在试管内进行的DNA复制,没有类似细胞内DNA错配修复机制,所以,在PCR产物扩增以后,仍要分析其与模板DNA的是否完全一致。最好的方法是将PCR产物测序,将测序结果与数据库作序列比对分析。第六部分 目的基因序列变异分析http://www.ncbi.nlm.nih.gov/核酸序列比对http://blast.ncbi.nlm.nih.gov/Blast.cgiBLAST分析界面输入测序结果结果界面之一结果界面之二 展开更多...... 收起↑ 资源预览