第18章 勾股定理 全章复习与巩固 沪科版数学八年级下册

资源下载
  1. 二一教育资源

第18章 勾股定理 全章复习与巩固 沪科版数学八年级下册

资源简介

《勾股定理》全章复习与巩固
【要点梳理】
要点一、勾股定理
1.勾股定理:
直角三角形两直角边的平方和等于斜边的平方.(即:)
2.勾股定理的应用
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:
(1)已知直角三角形的两边,求第三边;
(2)利用勾股定理可以证明有关线段平方关系的问题;
(3)求作长度为的线段.
要点二、勾股定理的逆定理
1.原命题与逆命题
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.
2.勾股定理的逆定理
勾股定理的逆定理:
如果三角形的三边长,满足,那么这个三角形是直角三角形.
应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:
(1)首先确定最大边,不妨设最大边长为;
(2)验证与是否具有相等关系,若,则△ABC是以∠C为直角的直角三角形,反之,则不是直角三角形.
3.勾股数
满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.
常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.
如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形.
观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:
1.较小的直角边为连续奇数;
2.较长的直角边与对应斜边相差1.
3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)
要点三、勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.
【典型例题】
类型一、运用勾股定理及逆定理求值或证明
1、已知:中,,,BC边上的高,求BC.
举一反三:
【变式1】已知如图,在中,,D在CB的延长线上.
求证:(1);
若D在CB上,结论如何,试证明你的结论.
【变式2】如图和都是等腰直角三角形,,,顶点在的斜边上,求证:.
2、如图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.
举一反三:
【变式1】“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?
【变式2】如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.
类型二、勾股定理与方程思想
3、如图,在矩形ABCD中,将沿对角线BD折叠,点A落在点E处,连接DE,BE,BE与CD交于点F.
(1)请你利用尺规作图,在图中作出E,F的位置,并标上字母(要求保留作图痕迹,不要求写作法);
(2)连接CE,若,,求的面积.
举一反三:
【变式1】如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求此时t的值;
(2)若点P恰好在∠BAC的平分线上,求t的值.
【变式2】如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,动点P从点B出发沿射线BC以3cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,请直接写出此时t的值.
类型三、勾股定理与折叠问题
4、如图,由△ABC中,,,.按如图所示方式折叠,使点B、C重合,折痕为DE,求出AE和AD的长.
,
举一反三:
【变式1】如图,有一块直角三角形纸片,两直角边,现将直角边AB沿直线BD对折,使点A恰好落在斜边BC上,且与重合,求BD的长.
【变式2】如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长
类型四、勾股定理与最值问题
5、如图,在中,,,,是上一点,且,是边上一点,将沿折叠,使点落在点处,连接,求的最小值.
举一反三:
【变式1】如图,在中,,,,平分交于点,,分别是,上的动点,求的最小值.
【变式2】阅读下面材料:
小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.
小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).
请回答:
(1)在图1中,小明得到的全等三角形是△   ≌△   ;BD的长为    .
(2)动点C在射线BN上运动,当运动到AC时,求BD的长;
(3)动点C在射线BN上运动,求△ABD周长最小值.
类型五、勾股定理与逆定理实际运用
6、如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);
(2)确定C港在A港的什么方向.
举一反三:
【变式1】小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程 ,
解方程得x1= ,x2= ,
∴点B将向外移动 米.
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.
【变式2】如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.
(1)问:A市是否会受到此台风的影响,为什么?
(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.
7、如图,小明准备把一支笔放入铅笔盒,竖放时笔的顶端E比铅笔盒的宽还要长,斜着放入时笔的顶端F与铅笔盒的边缘距离为,求铅笔盒的宽的长度.
举一反三:
【变式1】一艘船由港沿北偏东60°方向航线10至港,然后再沿北偏西30°方向航行10至港.
(1)求,两港之间的距离;
(2)确定港在港的什么方向?(画出示意图,并解答)
【变式2】如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中 =1.732, =4.583)

展开更多......

收起↑

资源预览