资源简介 北师大版初中数学七年级上册第三章 整式及其加减 3.2 整式的加减 教学设计一、内容和内容解析内容本节课选自北师大版《义务教育教科书·数学》七年级上册第三章“整式及其加减”中的第2节“整式的加减”,主要内容包括:同类项的概念识别、合并同类项的法则探究、整式加减运算的步骤及实际应用。通过具体代数式操作,深化对代数运算律的理解,培养学生符号化思想。内容解析整式的加减是代数式运算的核心基础,其本质是运用乘法分配律对多项式进行化简。同类项的识别与合并贯穿整章,直接影响后续方程、函数等内容的学习。学生需在理解“字母表示数”的基础上,将数的运算律迁移到式的运算中,体会从特殊到一般的数学思想。同时,整式加减在解决实际问题(如周长、面积计算)中具有广泛应用,是发展学生抽象能力与建模能力的关键载体。二、目标和目标解析1. 目标(1) 能准确识别同类项,理解合并同类项的依据(乘法分配律),掌握合并同类项的步骤。(2) 熟练运用去括号法则化简整式,并能规范进行整式的加减运算。(3) 通过解决生活实际问题(如几何图形计算、经济问题),发展数学建模能力和运算推理能力。2. 目标解析学生经历从具体算式中归纳同类项特征的过程,能根据字母部分相同这一核心标准判断同类项,并运用“系数相加、字母不变”的法则合并同类项。在整式加减运算中,通过去括号、合并同类项的规范化操作,提升代数运算的准确性和逻辑性。结合商品总价、图形面积等实际问题,体会整式运算的现实意义,为后续学习方程、不等式奠定代数变形基础。三、教学问题诊断分析概念混淆:学生易将“字母相同”等同于“字母个数相同”,忽略“相同字母的指数相同”这一条件(如误判 与 为同类项)。符号处理错误:去括号时对“负号”理解不足,导致括号内各项符号未变号(如 写成 )。步骤跳步:合并同类项时跳过“标记同类项”环节,直接系数加减,导致漏项或重复计算。实际应用脱节:无法将几何问题中的数量关系转化为整式表达式(如长方形周长公式的应用)。四、教学过程设计(一) 情景引入问题1超市中苹果每千克 元,香蕉每千克 元。小明确认购买 3 千克苹果和 2 千克香蕉,小红确认购买 5 千克苹果和 1 千克香蕉。两人需共支付多少元?问题2列式表示总费用:小明的花费为 ,小红的花费为 ,总费用为 。能否简化这个式子?问题3操场的长为 米,宽为 米,求跑道一圈的长度(周长)。列式为 ,如何化简?设计意图通过生活场景抽象出整式加减问题,激活学生已有经验(数的运算律),引出同类项合并与去括号的需求,渗透数学建模思想,对应目标(3)。(二) 合作探究1探究1观察多项式 :问:这两个项有何共同特征?答:都含字母 ,且 的指数都是 1。追问: 与 是否具有相同特征? 与 呢?答:是,字母部分完全相同(含相同字母且指数相同)。归纳:所含字母相同,且相同字母的指数也相同的项,称为 同类项。(三) 巩固练习1判断下列各组是否为同类项:(1) 与答:是(字母相同且指数相同)。(2) 与答:否( 的指数不同)。(四) 合作探究2探究2计算:追问:合并同类项时,字母部分为何保持不变?猜想:依据乘法分配律 。验证:设 表示单价, 为数量,则总价 。探究3(证明)合并同类项的本质是逆用乘法分配律:结论:合并同类项时,系数相加,字母部分不变。设计意图从具体运算抽象到分配律,强化算理理解;通过代数推理验证法则的普适性,培养逻辑推理能力,对应目标(1)(2)。(五) 典例分析例1 合并同类项:解:步骤:标记同类项含的项:含的项:常数项:步骤:系数相加设计意图规范解题步骤,强调“先标记、再合并”,避免跳步错误,对应目标(2)。(六) 巩固练习计算:几何应用:一个长方形长 ,宽 ,求周长。周长设计意图阶梯式训练巩固运算技能,几何问题强化建模能力,对应目标(2)(3)。(七) 归纳总结核心概念 规则说明 示例同类项 字母相同,相同字母指数相同 与合并同类项 系数相加,字母部分不变去括号法则 "+"号:直接去括号;"-"号:每项变号整式加减步骤 ①去括号 → ②标记同类项 → ③合并 例1完整流程(八) 感受中考(2024福建) 若 与 是同类项,则 。解:由定义得 ,故 。考点:同类项指数条件。(2023江西) 化简: 。解: 。考点:去括号与合并。(2024日照) 长方形的宽为 ,长比宽的 3 倍多 2,则周长为( )。解:长 ,周长 。考点:整式表示量与周长公式。(2022河南) 已知 , ,求 。解:考点:整式加减综合运算。设计意图:在学习完知识后加入中考真题练习,不仅可以帮助学生明确考试方向,熟悉考试题型,检验学习成果,提升应考能力,还可以提升学生的学习兴趣和动力。(九) 小结梳理知识模块 关联要点 思想方法同类项识别 字母部分完全相同 观察比较合并同类项 分配律逆用 化归思想(式→数)整式加减 去括号→合并 程序化操作实际应用 几何问题、经济问题中的代数建模 数学抽象(十) 布置作业必做题教材 P75 习题 3.2 第 1 题:合并同类项同类项:和教材 P76 第 5 题:化简选做题若 条直线相交于一点,可形成多少对对顶角?(提示:每两条直线形成 2 对对顶角)解:对顶角对数 。五、教学反思(课后填写) 展开更多...... 收起↑ 资源预览