(人教A版数学选择性必修二)讲义第07讲拓展二:数列求和(学生版+解析)

资源下载
  1. 二一教育资源

(人教A版数学选择性必修二)讲义第07讲拓展二:数列求和(学生版+解析)

资源简介

第07讲 拓展二:数列求和
一、知识点归纳
知识点一:倒序相加法
即如果一个数列的前项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前项和.
知识点二:分组求和法
1如果一个数列可写成的形式,而数列,是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.
2如果一个数列可写成的形式,在求和时可以使用分组求和法.
知识点三:裂项相消法
1、等差型

特别注意

如:(尤其要注意不能丢前边的)
2、无理型

如:
3、指数型

如:
4、通项裂项为“”型
如:①

本类模型典型标志在通项中含有乘以一个分式.
知识点四:错位相减法
错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求.倍错位相减法:若数列的通项公式,其中、中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫倍错位相减法.
知识点五:奇偶项讨论求和
1、通项公式分奇、偶项有不同表达式;例如:
角度1:求的前项和
角度2:求的前项和
2、通项含有的类型;例如:
二、题型精讲
题型01倒序相加法
1.(2023秋·山东潍坊·高三山东省安丘市第一中学校考阶段练习)已知函数,数列为等比数列,,且,利用课本中推导等差数列前项和的公式的方法,则( )
A. B.2017 C.4034 D.8068
2.(2023·全国·高三专题练习)已知函数满足,若数列满足,则数列的前20项的和为( )
A.230 B.115 C.110 D.100
3.(2023秋·江苏·高二专题练习)设函数,设,.
(1)计算的值.
(2)求数列的通项公式.
4.(2023·全国·高三专题练习)设,若,试求:
(1) ;
(2) .
5.(2023·全国·高三对口高考)已知函数,则 ;数列满足,则这个数列的前2015项的和等于 .
题型02分组求和法
1.(2023春·河南周口·高二校联考阶段练习)已知数列满足:.
(1)证明:是等比数列;
(2)求数列的前项和.
2.(2023秋·四川成都·高三四川省成都市新都一中校联考开学考试)已知等比数列的各项满足,若,且,,成等差数列.
(1)求的通项公式;
(2)求数列的前项和.
3.(2023秋·广东潮州·高三校考阶段练习)已知数列的前项和,且;
(1)求它的通项
(2)若,求数的前项和.
4.(2023秋·山东济南·高二山东省济南市莱芜第一中学校考期末)已知等差数列的前三项分别为
(1)求的通项公式
(2)若,求数列的前项和.
题型03裂项相消法(等差型)
1.(2023秋·广东惠州·高三博师高中校考阶段练习)已知是等差数列且为数列的前项和,
(1)求数列的通项公式;
(2)若,求数列的前项和.
2.(2023秋·陕西渭南·高三校考阶段练习)已知等差数列满足,且与的等差中项为5.
(1)求数列的通项公式;
(2)设,求数列的前项和.
3.(2023秋·甘肃庆阳·高二校考阶段练习)已知各项均为正数的数列的前项和为,且.
(1)求数列的通项公式;
(2)若数列满足,,求数列的前项和.
4.(2023秋·江西宜春·高三江西省丰城拖船中学校考开学考试)设是公差不为0的等差数列,,成等比数列.
(1)求的通项公式:
(2)设,求数列的前项和.
题型04裂项相消法(无理型)
1.(2023春·河南南阳·高二镇平县第一高级中学校考阶段练习)数列的前2022项和为( )
A. B. C. D.
2.(2023·全国·高三专题练习)已知数列满足,求数列的前n项和.
3.(2023秋·重庆北碚·高二统考期末)已知数列的前n项和.
(1)求数列的通项公式;
(2)设数列的前n项和为,若,求n的值.
4.(2023春·山西晋城·高二晋城市第一中学校校考阶段练习)已知等差数列的前项和为,公差为,若,.
(1)求数列的通项公式;
(2)若(),求数列的前项和.
题型05裂项相消法(指数型)
1.(2023·四川遂宁·射洪中学校考模拟预测)已知数列的前n项和为,且.
(1)求的通项公式;
(2)若,求数列的前n项和.
2.(2023·河北·统考模拟预测)已知数列的前n项和为,且.
(1)求数列的通项公式;
(2)记,数列的前n项和为,若不等式对任意恒成立,求实数的取值范围.
3.(2023·陕西西安·校联考模拟预测)已知递增等比数列的前项和为,,,且.
(1)求的通项公式;
(2)求数列的前项和.
4.(2023春·山东日照·高二统考期中)将正奇数数列1,3,5,7,9,…的各项按照上小下大、左小右大的原则写成如图的三角形数表.
(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;
(2)设,求数列的前n项和.
5.(2023·全国·高三专题练习)设数列的前n项和为,已知,且数列是公比为的等比数列.
(1)求数列的通项公式;
(2)设,数列的前n项和为,证明:.
题型06裂项相消法(通项裂项为“”型)
1.(2023·全国·高三专题练习)设为数列的前项和,满足,其中,数列的前项和为,满足,则 .
2.(2023秋·浙江·高三浙江省富阳中学校联考阶段练习)已知数列的前项和为,满足,.
(1)求的通项公式;
(2)若,求数列的前20项和.
3.(2023·湖北襄阳·襄阳四中校考模拟预测)设正项数列的前n项和为,已知,且.
(1)求的通项公式;
(2)若,求数列的前n项和.
4.(2023·江苏镇江·江苏省镇江中学校考二模)已知数列满足:.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
题型07错位相减法
1.(2023春·新疆乌鲁木齐·高二校考期中)已知等差数列满足,,公比不为的等比数列满足,.
(1)求与的通项公式;
(2)设,求的前项和.
2.(2023秋·江西南昌·高三南昌县莲塘第一中学校考阶段练习)已知数列的首项,其前项和为,且,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
3.(2023秋·江苏苏州·高二星海实验中学校考阶段练习)已知数列的前项和为且成等差数列.
(1)求的通项公式;
(2)若,求数列的前项和.
4.(2023秋·安徽合肥·高三合肥一中校考阶段练习)在等差数列中,,,数列的前项和为,且.
(1)求数列和的通项公式;
(2)若,求数列的前n项和.
题型08奇偶项讨论求和(求的前项和)
1.(2023秋·江苏南京·高三校联考阶段练习)已知等差数列的前项和为,且满足,.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
2.(2023秋·山东德州·高三德州市第一中学校考阶段练习)数列满足,.
(1)求的通项公式;
(2)设,求数列的前项和.
3.(2023·广西柳州·统考模拟预测)设等比数列的前项和为,且.
(1)求数列的通项公式;
(2)设,数列的前项和为,求.
4.(2023秋·黑龙江哈尔滨·高三哈尔滨德强学校校考开学考试)已知数列为正项等差数列,数列为递增的正项等比数列,,.
(1)求数列,的通项公式;
(2)数列满足,求数列的前2n项的和.
题型09奇偶项讨论求和(求的前项和)
1.(2023·浙江绍兴·统考模拟预测)已知数列满足.
(1)求的通项公式;
(2)设数列满足求的前项和.
2.(2023春·广东佛山·高二佛山市荣山中学校考期中)已知数列满足,.
(1)记,写出、,并求数列的通项公式;
(2)求的前项和.
3.(2023·湖南长沙·周南中学校考三模)已知数列的前n项和为,,且.
(1)求的通项公式;
(2)已知,求数列的前n项和.
4.(2023·全国·高三专题练习)已知正项数列的前n项和,且,数列为单调递增的等比数列,.
(1)求数列的通项公式;
(2)设,求.
题型10通项含绝对值数列求和
1.(2023秋·云南·高三校联考阶段练习)已知数列的前项和为,且.
(1)求的通项公式
(2)若,求的前项和.
2.(2023春·河南南阳·高二校考阶段练习)在等比数列中,,公比,且,是与的等比中项.
(1)求数列的通项公式;
(2)若,,求.
3.(2023春·湖北省直辖县级单位·高二校考阶段练习)设单调递减的等差数列的前项和为.
(1)求数列的通项公式及前项和;
(2)设数列的前项和为,求.
4.(2023·全国·高三专题练习)已知等差数列的前n项和为,其中,.
(1)求数列的通项;
(2)求数列的前n项和为.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)第07讲 拓展二:数列求和
一、知识点归纳
知识点一:倒序相加法
即如果一个数列的前项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前项和.
知识点二:分组求和法
1如果一个数列可写成的形式,而数列,是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.
2如果一个数列可写成的形式,在求和时可以使用分组求和法.
知识点三:裂项相消法
1、等差型

特别注意

如:(尤其要注意不能丢前边的)
2、无理型

如:
3、指数型

如:
4、通项裂项为“”型
如:①

本类模型典型标志在通项中含有乘以一个分式.
知识点四:错位相减法
错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求.倍错位相减法:若数列的通项公式,其中、中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫倍错位相减法.
知识点五:奇偶项讨论求和
1、通项公式分奇、偶项有不同表达式;例如:
角度1:求的前项和
角度2:求的前项和
2、通项含有的类型;例如:
二、题型精讲
题型01倒序相加法
1.(2023秋·山东潍坊·高三山东省安丘市第一中学校考阶段练习)已知函数,数列为等比数列,,且,利用课本中推导等差数列前项和的公式的方法,则( )
A. B.2017 C.4034 D.8068
【答案】C
【详解】用倒序相加法:令①
则也有②
由,
,即有,
可得:,
于是由①②两式相加得,所以.
故选:C
2.(2023·全国·高三专题练习)已知函数满足,若数列满足,则数列的前20项的和为( )
A.230 B.115 C.110 D.100
【答案】B
【详解】,①
,②
两式相加,又因为
故,所以
所以的前20项的和为
故选:B
3.(2023秋·江苏·高二专题练习)设函数,设,.
(1)计算的值.
(2)求数列的通项公式.
【答案】(1)2
(2)
【详解】(1);
(2)由题知,当时,,
又,两式相加得

所以,
又不符合,
所以.
4.(2023·全国·高三专题练习)设,若,试求:
(1) ;
(2) .
【答案】 1 500
【详解】(1)因为,,
所以,.
(2)由(1)可得,.
所以,,
所以.
故答案为:1;500.
5.(2023·全国·高三对口高考)已知函数,则 ;数列满足,则这个数列的前2015项的和等于 .
【答案】 /1007.5
【详解】由,
得,所以,
设数列前项之和为,
则,

两式相加得,所以,
即这个数列的前2015项的和等于.
故答案为:;.
题型02分组求和法
1.(2023春·河南周口·高二校联考阶段练习)已知数列满足:.
(1)证明:是等比数列;
(2)求数列的前项和.
【答案】(1)证明见解析
(2)
【详解】(1)由得,
,
又,
故是以为首项,为公比的等比数列.
(2)由(1)知,,
则,

.
2.(2023秋·四川成都·高三四川省成都市新都一中校联考开学考试)已知等比数列的各项满足,若,且,,成等差数列.
(1)求的通项公式;
(2)求数列的前项和.
【答案】(1)
(2)
【详解】(1)设的首项为,
由于,,成等差数列,则,即,
化简可得,
又,解得或(舍去),

(2)设数列的前项和为,


3.(2023秋·广东潮州·高三校考阶段练习)已知数列的前项和,且;
(1)求它的通项
(2)若,求数的前项和.
【答案】(1)
(2)
【详解】(1),当时,,
当时,,经验证,满足,

(2),,
数列是以首项为1,2为公比的等比数列,

综上,,.
4.(2023秋·山东济南·高二山东省济南市莱芜第一中学校考期末)已知等差数列的前三项分别为
(1)求的通项公式
(2)若,求数列的前项和.
【答案】(1)
(2)
【详解】(1)设等差数列公差为,由已知,
所以,解得,则,
所以公差,所以.
(2)由题意可得,
所以
.
题型03裂项相消法(等差型)
1.(2023秋·广东惠州·高三博师高中校考阶段练习)已知是等差数列且为数列的前项和,
(1)求数列的通项公式;
(2)若,求数列的前项和.
【答案】(1)
(2)
【详解】(1)设公差为,则,
所以,
(2),
所以
2.(2023秋·陕西渭南·高三校考阶段练习)已知等差数列满足,且与的等差中项为5.
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1)
(2)
【详解】(1)设等差数列的公差为d,
∵,即,
又∵与的等差中项为5,
∴,解得,
∴数列的通项公式为;
(2)由(1)得,

.
3.(2023秋·甘肃庆阳·高二校考阶段练习)已知各项均为正数的数列的前项和为,且.
(1)求数列的通项公式;
(2)若数列满足,,求数列的前项和.
【答案】(1)
(2)
【详解】(1)由得,故两式相减可得:,化简得,
由于各项均为正数,所以,故(常数),
又当时,,由于,故,
所以数列是以1为首项,1为公差的等差数列;
故.
(2)由(1)得:时,;
所以当时,

当也符合上式,

4.(2023秋·江西宜春·高三江西省丰城拖船中学校考开学考试)设是公差不为0的等差数列,,成等比数列.
(1)求的通项公式:
(2)设,求数列的前项和.
【答案】(1)
(2)
【详解】(1)设的公差为,
因为成等比数列,所以
又因为,所以,所以.
因为,所以,所以,得,
故.
(2)因为,
所以

题型04裂项相消法(无理型)
1.(2023春·河南南阳·高二镇平县第一高级中学校考阶段练习)数列的前2022项和为( )
A. B. C. D.
【答案】D
【详解】因为,
所以数列的前2022项的和为:
.
故选:D
2.(2023·全国·高三专题练习)已知数列满足,求数列的前n项和.
【答案】.
【详解】因为,
所以.
3.(2023秋·重庆北碚·高二统考期末)已知数列的前n项和.
(1)求数列的通项公式;
(2)设数列的前n项和为,若,求n的值.
【答案】(1)
(2)
【详解】(1)当时,,
由时,符合上式,
数列的通项公式为;
(2)由(1)得,

则,解得.
4.(2023春·山西晋城·高二晋城市第一中学校校考阶段练习)已知等差数列的前项和为,公差为,若,.
(1)求数列的通项公式;
(2)若(),求数列的前项和.
【答案】(1)
(2)
【详解】(1)因为等差数列{an}中,,,
所以,解得,
所以数列的通项公式为.
(2)因为
=,

=.
题型05裂项相消法(指数型)
1.(2023·四川遂宁·射洪中学校考模拟预测)已知数列的前n项和为,且.
(1)求的通项公式;
(2)若,求数列的前n项和.
【答案】(1)
(2)
【详解】(1)由已知①,
当时,,即,解得,
当时,②,
①②得,即,
所以数列是以为首项,为公比的等比数列,
所以;
(2)因为,
所以
.
2.(2023·河北·统考模拟预测)已知数列的前n项和为,且.
(1)求数列的通项公式;
(2)记,数列的前n项和为,若不等式对任意恒成立,求实数的取值范围.
【答案】(1)
(2)
【详解】(1)解:由,可得,
当时,;
当时,,满足上式,
所以数列为等比数列,其通项公式为.
(2)解:由数列的通项公式为,
可得,
所以,
又由,可得,即,
当时,取得最大值,
故的取值范围为.
3.(2023·陕西西安·校联考模拟预测)已知递增等比数列的前项和为,,,且.
(1)求的通项公式;
(2)求数列的前项和.
【答案】(1)
(2)
【详解】(1)设的公比为,显然,由,则,
即,解得,
又,
整理得,解得或,
由得,当时,由,得,不合题意,舍去,
故,所以,所以的通项公式为.
(2)由(1)可得,
所以
所以.
4.(2023春·山东日照·高二统考期中)将正奇数数列1,3,5,7,9,…的各项按照上小下大、左小右大的原则写成如图的三角形数表.
(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;
(2)设,求数列的前n项和.
【答案】(1),
(2)
【详解】(1)由数表知,为第个奇数,又
第n个奇数为,则,;
(2)由(1)可得.
则.
5.(2023·全国·高三专题练习)设数列的前n项和为,已知,且数列是公比为的等比数列.
(1)求数列的通项公式;
(2)设,数列的前n项和为,证明:.
【答案】(1)
(2)证明见解析
【详解】(1) , ,所以数列是首项为1,公比为的等比数列,
所以,
即,从而,两式作差得: ,
化简得: ,即,
所以,所以数列是以为首项,以3为公比的等比数列,
故数列的通项公式为;
(2),


因为,所以.
题型06裂项相消法(通项裂项为“”型)
1.(2023·全国·高三专题练习)设为数列的前项和,满足,其中,数列的前项和为,满足,则 .
【答案】
【详解】当时,,
①,当时,②,
两式相减得,即,
所以,
且对也适合,综上,,
故,
.
故答案为:
2.(2023秋·浙江·高三浙江省富阳中学校联考阶段练习)已知数列的前项和为,满足,.
(1)求的通项公式;
(2)若,求数列的前20项和.
【答案】(1)
(2)
【详解】(1)由,得,
而,因此数列是以1为首项,1为公差的等差数列,
所以,即,
当时,,显然也满足上式,
所以.
(2)由(1)知,,,
因此,
所以.
3.(2023·湖北襄阳·襄阳四中校考模拟预测)设正项数列的前n项和为,已知,且.
(1)求的通项公式;
(2)若,求数列的前n项和.
【答案】(1);
(2)
【详解】(1)因为,所以①,
所以时,②.
由,得,即.
因为各项均为正数,所以,即,
因为,所以,,解得,,,
所以数列是公差为2的等差数列,
所以.
(2)由(1)得.
当n为偶数时,

当n为奇数时,

所以
4.(2023·江苏镇江·江苏省镇江中学校考二模)已知数列满足:.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
【答案】(1)
(2)
【详解】(1)由题意: ,


,将代入上式也成立, ;
(2) ,
.
题型07错位相减法
1.(2023春·新疆乌鲁木齐·高二校考期中)已知等差数列满足,,公比不为的等比数列满足,.
(1)求与的通项公式;
(2)设,求的前项和.
【答案】(1)
(2)
【详解】(1)由题意不妨设等差数列、等比数列的公差、公比分别为,
所以有和,
注意到,所以分别解得和,
因此由定义可知与的通项公式分别为.
(2)由(1)可知,
所以由题意有,
当时,有,
所以有,
以上两式作差得

当时,有,
综上所述:的前项和为.
2.(2023秋·江西南昌·高三南昌县莲塘第一中学校考阶段练习)已知数列的首项,其前项和为,且,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1)
(2)
【详解】(1)已知,
当时,,即,由,解得.
当时,,
则相减得.
当时,也成立.
所以对于都有成立.
上式化为,所以是等比数列,首项为4,公比为3,
则,即.
(2)因为,
则,
两式相减得,

所以.
3.(2023秋·江苏苏州·高二星海实验中学校考阶段练习)已知数列的前项和为且成等差数列.
(1)求的通项公式;
(2)若,求数列的前项和.
【答案】(1);
(2).
【详解】(1)由,,则,
有,则,
所以,又,显然也满足,
故是首项为1,公比为的等比数列,则
所以,则,
所以,故.
(2)由,则,
所以,则,
所以,则.
4.(2023秋·安徽合肥·高三合肥一中校考阶段练习)在等差数列中,,,数列的前项和为,且.
(1)求数列和的通项公式;
(2)若,求数列的前n项和.
【答案】(1),
(2)
【详解】(1)解:设等差数列的公差为,
则,解得,
所以,,
数列的前项和为,且,
当时,则有,
当时,由可得,
上述两个等式作差可得,即,
所以,数列是首项为,公比为的等比数列,则.
(2)解:因为,则,①
可得,②
①②得

故.
题型08奇偶项讨论求和(求的前项和)
1.(2023秋·江苏南京·高三校联考阶段练习)已知等差数列的前项和为,且满足,.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
【答案】(1)
(2)
【详解】(1)(1)设数列等差数列的公差为d,
因为,所以,则,
因为,即,所以,
所以,,
所以,即 .
(2)因为,所以,
所以

2.(2023秋·山东德州·高三德州市第一中学校考阶段练习)数列满足,.
(1)求的通项公式;
(2)设,求数列的前项和.
【答案】(1)
(2)
【详解】(1)∵,,则,
∴,两式相除得:,
当时,,
∴,即,
当时,,
∴,即,
综上所述,的通项公式为:;
(2)由题设及(1)可知:,
3.(2023·广西柳州·统考模拟预测)设等比数列的前项和为,且.
(1)求数列的通项公式;
(2)设,数列的前项和为,求.
【答案】(1)
(2)
【详解】(1)由题知,设等比数列的公比为,显然,
则有
由①÷②得,所以,代入①得,
所以;
(2)由(1)可得,
所以
.
4.(2023秋·黑龙江哈尔滨·高三哈尔滨德强学校校考开学考试)已知数列为正项等差数列,数列为递增的正项等比数列,,.
(1)求数列,的通项公式;
(2)数列满足,求数列的前2n项的和.
【答案】(1),
(2)
【详解】(1)设等差数列的公差为d,等比数列的公比为q,
因为,,
所以得,解得或,
因为数列为正项数列,为正项递增数列,
所以解得,,
所以,
(2)由(1)得,
所以数列的前2项和为
.
题型09奇偶项讨论求和(求的前项和)
1.(2023·浙江绍兴·统考模拟预测)已知数列满足.
(1)求的通项公式;
(2)设数列满足求的前项和.
【答案】(1),;
(2).
【详解】(1)根据题意可知,
所以
当为奇数时,,即,
所以当为偶数时,;
当为偶数时,,即,
所以当为奇数时,.
综上,,.
(2)由(1)可知当为奇数时,若,即,解得,
当为偶数时,若,即,解得,
所以,当时,,
所以.
当时,且为奇数时,
当时,且为偶数时,
.
综上,
2.(2023春·广东佛山·高二佛山市荣山中学校考期中)已知数列满足,.
(1)记,写出、,并求数列的通项公式;
(2)求的前项和.
【答案】(1),,
(2)
【详解】(1)解:因为数列满足,,
所以,,,
,即,
所以,数列是公差为,首项为的等差数列,
因此,.
(2)当为偶数时,设,则,,
所以,,
此时,

当为奇数时,设,则,

.
综上所述,.
3.(2023·湖南长沙·周南中学校考三模)已知数列的前n项和为,,且.
(1)求的通项公式;
(2)已知,求数列的前n项和.
【答案】(1)
(2)
【详解】(1)∵,则有:
当时,,解得;
当时,则,
两式相减得,即;
注意到,故,
∴是首项为3,公比为3的等比数列,
故.
(2)由(1)得,
当n为偶数时,

当n为奇数时;
综上所述:.
4.(2023·全国·高三专题练习)已知正项数列的前n项和,且,数列为单调递增的等比数列,.
(1)求数列的通项公式;
(2)设,求.
【答案】(1),
(2)
【详解】(1)由可知,

化简可得:
,即,
数列是以2为公差的等差数列,

由可知,

又由为递增的等比数列,且,即,
解得,.
(2)依题意可知,
因此
,
当为偶数时,原式,
当为奇数时,原式,
综上,.
题型10通项含绝对值数列求和
1.(2023秋·云南·高三校联考阶段练习)已知数列的前项和为,且.
(1)求的通项公式
(2)若,求的前项和.
【答案】(1)
(2)
【详解】(1)由,
当时,可得,
当时,,适合上式,
所以数列的通项公式为.
(2)由,可得,则,
令,可得,
当时,可得,
当时,可得

因为,所以,
所以.
2.(2023春·河南南阳·高二校考阶段练习)在等比数列中,,公比,且,是与的等比中项.
(1)求数列的通项公式;
(2)若,,求.
【答案】(1)
(2)
【详解】(1)解:在等比数列中,,且,
所以,,即,则,
因为是与的等比中项,所以,,
而,则,所以,,,所以,,
所以,.
(2)解:因为,
当时,,.
当时,,
.
综上所述,.
3.(2023春·湖北省直辖县级单位·高二校考阶段练习)设单调递减的等差数列的前项和为.
(1)求数列的通项公式及前项和;
(2)设数列的前项和为,求.
【答案】(1),
(2)
【详解】(1)因为数列为等差数列,所以,
又,解得,或,
又因为数列单调递减,所以,
所以,所以,解得,
所以.
(2)由,解得,
,解得,即,
所以当时,,
当时,,
综上.
4.(2023·全国·高三专题练习)已知等差数列的前n项和为,其中,.
(1)求数列的通项;
(2)求数列的前n项和为.
【答案】(1)
(2)
【详解】(1)设的公差为,
则,解得,
所以;
(2)因为,所以,
当时,,此时,

当时,,此时,

综上所述:.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表